温馨提示×

python随机森林分类算法代码怎么写

小亿
116
2023-12-12 11:21:34
栏目: 编程语言

下面是一个简单的示例代码,演示了如何使用Python的sklearn库中的随机森林分类算法进行分类:

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 加载数据集
iris = load_iris()
X, y = iris.data, iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建随机森林分类器
rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)

# 在训练集上训练随机森林分类器
rf_classifier.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = rf_classifier.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("准确率:", accuracy)

在上面的代码中,首先我们使用load_iris函数加载了一个经典的鸢尾花数据集作为示例数据。然后,使用train_test_split函数将数据集划分为训练集和测试集。接下来,我们创建了一个参数中指定了100个决策树的随机森林分类器,并使用训练集对其进行训练。最后,使用训练好的模型对测试集进行预测,并计算预测准确率。

0