小编给大家分享一下如何基于Android studio3.6的JNI教程之ncnn之语义分割ENet,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
Android是一种基于Linux内核的自由及开放源代码的操作系统,主要使用于移动设备,如智能手机和平板电脑,由美国Google公司和开放手机联盟领导及开发。
本代码可以在模拟器下进行跑。
环境:
Android studio 3.6
Sdk:android10 api 29
Ndk:r15c
Ncnn:20200226
Opencv:Opencv3.4.1 android sdk
Linux下的代码测试:
mkdir build
cd build
cmake ..
make
./enet
运行效果,
Android开始:
(1)新建工程,
New->New Project->选择Native c++ ->工程名enet->c++11
(2)app/src/cpp下面增加opencv和ncnn的头文件,include
(3)app/src/main下面增加ncnn 和opencv的静态库文件和动态库文件,
(4)app/src/main下面增加模型文件assets
(5)修改布局文件,app/src/main/res/layout/ activity_main.xml
<?xml version="1.0" encoding="utf-8"?> <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:app="http://schemas.android.com/apk/res-auto" xmlns:tools="http://schemas.android.com/tools" android:layout_width="match_parent" android:layout_height="match_parent" tools:context=".MainActivity"> <LinearLayout android:id="@+id/btn_ll" android:layout_alignParentBottom="true" android:layout_width="match_parent" android:layout_height="wrap_content" android:orientation="horizontal"> <Button android:id="@+id/use_photo" android:layout_weight="1" android:layout_width="0dp" android:layout_height="wrap_content" android:text="选图"/> <Button android:id="@+id/detect_photo" android:layout_weight="1" android:layout_width="0dp" android:layout_height="wrap_content" android:text="分割"/> </LinearLayout> <ImageView android:id="@+id/show_image" android:layout_width="match_parent" android:layout_height="match_parent" android:layout_above="@id/btn_ll" android:layout_alignParentTop="true" android:layout_marginTop="1dp" android:layout_marginBottom="-1dp" /> </RelativeLayout>
(6) app/src/main/java/com/example/enet增加ENET类,
public class ENET { public native boolean Init(byte[] param, byte[] bin); public native float[] Process(Bitmap bitmap); // Used to load the 'native-lib' library on application startup. static { System.loadLibrary("ENET"); } }
(7) app/src/main/cpp/enet-jni.cpp实现其jni方法,
extern "C" JNIEXPORT jboolean JNICALL Java_com_example_enet_ENET_Init(JNIEnv *env, jobject thiz, jbyteArray param, jbyteArray bin) { // TODO: implement Init() ncnn::Mat ncnn_param; ncnn::Mat ncnn_bin; // init param { int len = env->GetArrayLength(param); ncnn_param.create(len, (size_t) 1u); env->GetByteArrayRegion(param, 0, len, (jbyte *) ncnn_param); } // init bin { int len = env->GetArrayLength(bin); ncnn_bin.create(len, (size_t) 1u); env->GetByteArrayRegion(bin, 0, len, (jbyte *) ncnn_bin); } ncnn_net = new ENET(ncnn_param,ncnn_bin); return JNI_TRUE; } extern "C" JNIEXPORT jfloatArray JNICALL Java_com_example_enet_ENET_Process(JNIEnv *env, jobject thiz, jobject bitmap) { // TODO: implement Process() // ncnn from bitmap ncnn::Mat in; { AndroidBitmapInfo info; AndroidBitmap_getInfo(env, bitmap, &info); int width = info.width; int height = info.height; if (info.format != ANDROID_BITMAP_FORMAT_RGBA_8888) return NULL; void* indata; AndroidBitmap_lockPixels(env, bitmap, &indata); // 把像素转换成data,并指定通道顺序 // 因为图像预处理每个网络层输入的数据格式不一样一般为300*300 128*128等等所以这类需要一个resize的操作可以在cpp中写,也可以是java读入图片时有个resize操作 //in = ncnn::Mat::from_pixels_resize((const unsigned char*)indata, ncnn::Mat::PIXEL_RGBA2RGB, width, height,300,300); in = ncnn::Mat::from_pixels(static_cast<const unsigned char *>(indata), ncnn::Mat::PIXEL_RGBA2BGR, width, height); // 下面一行为debug代码 __android_log_print(ANDROID_LOG_DEBUG, "ENetJniIn", "enet_process_has_input1, in.w: %d; in.h: %d in.c:%d ", in.w, in.h,in.c); //AndroidBitmap_unlockPixels(env, bitmap); } { ncnn::Mat out = ncnn_net->process(in); __android_log_print(ANDROID_LOG_DEBUG, "ENetJniIn", "enet_process_has_output, in.w: %d; in.h: %d in.c:%d ", out.w, out.h,out.c); int output_wsize = out.w; int output_hsize = out.h; //输出整理 float *output[output_wsize * output_hsize]; // float类型 for(int i = 0; i< out.h; i++) { for (int j = 0; j < out.w; j++) { output[i*output_wsize + j] = &out.row( i)[j]; } } //建立float数组 长度为 output_wsize * output_hsize,如果只是ouput_size相当于只有一行的out的数据那就是一个object检测数据 jfloatArray jOutputData = env->NewFloatArray(output_wsize * output_hsize); if (jOutputData == nullptr) return nullptr; env->SetFloatArrayRegion(jOutputData, 0, output_wsize * output_hsize, reinterpret_cast<const jfloat *>(*output)); return jOutputData; } }
(8) app/src/main/java/com/example/enet中MainActivity做具体的调用实现,
public class MainActivity extends AppCompatActivity { private ENET enet = new ENET(); //java接口实例化 下面直接利用java函数调用NDK c++函数 private Bitmap yourSelectedImage = null; private static final int SELECT_IMAGE = 1; private static final String TAG = MainActivity.class.getName(); private ImageView show_image; private boolean load_result = false; private int[] ddims = {1, 3, 512, 288}; //这里的维度的值要和train model的input 一一对应 @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); try { initENet();//初始化模型 Log.e("MainActivity", "initENet ok"); } catch (IOException e) { Log.e("MainActivity", "initENet error"); } init_view();//检测+view画图 } // initialize view private void init_view() { show_image = (ImageView) findViewById(R.id.show_image); Button use_photo = (Button) findViewById(R.id.use_photo); use_photo.setOnClickListener(new View.OnClickListener() { @Override public void onClick(View arg0) { Intent i = new Intent(Intent.ACTION_PICK); i.setType("image/*"); startActivityForResult(i, SELECT_IMAGE); } }); Button detect_photo = (Button) findViewById(R.id.detect_photo); detect_photo.setOnClickListener(new View.OnClickListener() { @Override public void onClick(View arg0) { if (yourSelectedImage == null) return; predict_image(yourSelectedImage); } }); } private void initENet() throws IOException { byte[] param = null; byte[] bin = null; { //用io流读取二进制文件,最后存入到byte[]数组中 InputStream assetsInputStream = getAssets().open("enet_512288.param.bin");// param: 网络结构文件 int available = assetsInputStream.available(); param = new byte[available]; int byteCode = assetsInputStream.read(param); assetsInputStream.close(); } { //用io流读取二进制文件,最后存入到byte上,转换为int型 InputStream assetsInputStream = getAssets().open("enet_512288.bin");//bin: model文件 int available = assetsInputStream.available(); bin = new byte[available]; int byteCode = assetsInputStream.read(bin); assetsInputStream.close(); } load_result = enet.Init(param, bin);// 再将文件传入java的NDK接口(c++ 代码中的init接口 ) Log.d("load model", "ENet_load_model_result:" + load_result); } @Override protected void onActivityResult(int requestCode, int resultCode, Intent data) { super.onActivityResult(requestCode, resultCode, data); if (resultCode == RESULT_OK && null != data) { Uri selectedImage = data.getData(); try { if (requestCode == SELECT_IMAGE) { Bitmap bitmap = decodeUri(selectedImage); Bitmap rgba = bitmap.copy(Bitmap.Config.ARGB_8888, true); // resize to 512x288 yourSelectedImage = Bitmap.createScaledBitmap(rgba, ddims[2], ddims[3], false); show_image.setImageBitmap(yourSelectedImage); } } catch (FileNotFoundException e) { Log.e("MainActivity", "FileNotFoundException"); return; } } } private Bitmap decodeUri(Uri selectedImage) throws FileNotFoundException { // Decode image size BitmapFactory.Options o = new BitmapFactory.Options(); o.inJustDecodeBounds = true; BitmapFactory.decodeStream(getContentResolver().openInputStream(selectedImage), null, o); // The new size we want to scale to final int REQUIRED_SIZE = 600; // Find the correct scale value. It should be the power of 2. int width_tmp = o.outWidth, height_tmp = o.outHeight; int scale = 1; while (true) { if (width_tmp / 2 < REQUIRED_SIZE || height_tmp / 2 < REQUIRED_SIZE) { break; } width_tmp /= 2; height_tmp /= 2; scale *= 2; } // Decode with inSampleSize BitmapFactory.Options o2 = new BitmapFactory.Options(); o2.inSampleSize = scale; return BitmapFactory.decodeStream(getContentResolver().openInputStream(selectedImage), null, o2); } // predict image private void predict_image(Bitmap bmp) { // picture to float array Bitmap rgba = bmp.copy(Bitmap.Config.ARGB_8888, true); // resize Bitmap input_bmp = Bitmap.createScaledBitmap(rgba, ddims[2], ddims[3], false); try { // Data format conversion takes too long // Log.d("inputData", Arrays.toString(inputData)); long start = System.currentTimeMillis(); // get predict result float[] result = enet.Process(input_bmp); // time end long end = System.currentTimeMillis(); Log.d(TAG, "origin predict result:" + Arrays.toString(result)); long time = end - start; Log.d("result length", "length of result: " + String.valueOf(result.length)); // 画布配置 Canvas canvas = new Canvas(input_bmp); //图像上画矩形 Paint paint = new Paint(); //continue to draw rect Log.d(TAG, "result :" + result.length); Log.d(TAG, "result :" + Arrays.toString(result)); for(int num = 0; num < result.length; num++){ // 画框 int row =num%ddims[2]; int col = num/ddims[2]; if (result[num]==1){ paint.setColor(Color.RED); paint.setStyle(Paint.Style.STROKE);//不填充 canvas.drawCircle(row, col, 1, paint); } if (result[num]==2){ paint.setColor(Color.BLUE); paint.setStyle(Paint.Style.STROKE);//不填充 canvas.drawCircle(row, col, 1, paint); } if (result[num]==3){ paint.setColor(Color.GREEN); paint.setStyle(Paint.Style.STROKE);//不填充 canvas.drawCircle(row, col, 1, paint); } } show_image.setImageBitmap(input_bmp); } catch (Exception e) { e.printStackTrace(); } } }
(9) app/src/main/cpp下面修改CMakeLists
cmake_minimum_required(VERSION 3.4.1) include_directories(include) file(GLOB ENET_SRC *.h *.cpp) set(ENET_COMPILE_CODE ${ENET_SRC}) add_library(libopencv_java3 SHARED IMPORTED) set_target_properties(libopencv_java3 PROPERTIES IMPORTED_LOCATION ${CMAKE_SOURCE_DIR}/../jniLibs/${ANDROID_ABI}/libopencv_java3.so) add_library(libncnn STATIC IMPORTED ) set_target_properties(libncnn PROPERTIES IMPORTED_LOCATION ${CMAKE_SOURCE_DIR}/../jniLibs/${ANDROID_ABI}/libncnn.a) add_library( # Sets the name of the library. ENET ## 为生成.so的文字最好直接和.c名字一样,需要更改 # Sets the library as a shared library. SHARED # Provides a relative path to your source file(s). ${ENET_COMPILE_CODE})##cpp文件的name find_library( # Sets the name of the path variable. log-lib # Specifies the name of the NDK library that # you want CMake to locate. log ) target_link_libraries( # Specifies the target library. ENET libncnn libopencv_java3 jnigraphics android # Links the target library to the log library # included in the NDK. ${log-lib} )
(10) app/src/下面修改build.gradle,增加下面的设置,
externalNativeBuild { cmake { arguments "-DANDROID_TOOLCHAIN=clang" cFlags "-fopenmp -O2 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math " cppFlags "-fopenmp -O2 -fvisibility=hidden -fvisibility-inlines-hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math " arguments "-DANDROID_STL=c++_shared", "-DANDROID_CPP_FEATURES=rtti exceptions" cppFlags "" cppFlags "-std=c++11" cppFlags "-frtti" cppFlags "-fexceptions" } } ndk { abiFilters 'armeabi-v7a'// , 'arm64-v8a' //,'x86', 'x86_64', 'armeabi' stl "gnustl_static" }
整体目录结构:
最终效果:
以上是“如何基于Android studio3.6的JNI教程之ncnn之语义分割ENet”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。