怎么在python中使用feapde爬虫框架?相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。
Python是一种跨平台的、具有解释性、编译性、互动性和面向对象的脚本语言,其最初的设计是用于编写自动化脚本,随着版本的不断更新和新功能的添加,常用于用于开发独立的项目和大型项目。
和 Scrapy 类似,feapder 支持轻量级爬虫、分布式爬虫、批次爬虫、爬虫报警机制等功能
内置的 3 种爬虫如下:
AirSpider
轻量级爬虫,适合简单场景、数据量少的爬虫
Spider
分布式爬虫,基于 Redis,适用于海量数据,并且支持断点续爬、自动数据入库等功能
BatchSpider
分布式批次爬虫,主要用于需要周期性采集的爬虫
在实战之前,我们在虚拟环境下安装对应的依赖库
# 安装依赖库 pip3 install feapder
我们以最简单的 AirSpider 来爬取一些简单的数据
目标网站:aHR0cHM6Ly90b3BodWIudG9kYXkvIA==
详细实现步骤如下( 5 步)
首先,我们使用「 feapder create -p 」命令创建一个爬虫项目
# 创建一个爬虫项目 feapder create -p tophub_demo
命令行进入到 spiders 文件夹目录下,使用「 feapder create -s 」命令创建一个爬虫
cd spiders # 创建一个轻量级爬虫 feapder create -s tophub_spider 1
其中
1 为默认,表示创建一个轻量级爬虫 AirSpider
2 代表创建一个分布式爬虫 Spider
3 代表创建一个分布式批次爬虫 BatchSpider
以 Mysql 为例,首先我们在数据库中创建一张数据表
# 创建一张数据表 create table topic ( id int auto_increment primary key, title varchar(100) null comment '文章标题', auth varchar(20) null comment '作者', like_count int default 0 null comment '喜欢数', collection int default 0 null comment '收藏数', comment int default 0 null comment '评论数' );
然后,打开项目根目录下的 settings.py 文件,配置数据库连接信息
# settings.py MYSQL_IP = "localhost" MYSQL_PORT = 3306 MYSQL_DB = "xag" MYSQL_USER_NAME = "root" MYSQL_USER_PASS = "root"
最后,创建映射 Item( 可选 )
进入到 items 文件夹,使用「 feapder create -i 」命令创建一个文件映射到数据库
PS:由于 AirSpider 不支持数据自动入库,所以这步不是必须
第一步,首先使「 MysqlDB 」初始化数据库
from feapder.db.mysqldb import MysqlDB class TophubSpider(feapder.AirSpider): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.db = MysqlDB()
第二步,在 start_requests 方法中,指定爬取主链接地址,使用关键字「download_midware 」配置随机 UA
import feapder from fake_useragent import UserAgent def start_requests(self): yield feapder.Request("https://tophub.today/", download_midware=self.download_midware) def download_midware(self, request): # 随机UA # 依赖:pip3 install fake_useragent ua = UserAgent().random request.headers = {'User-Agent': ua} return request
第三步,爬取首页标题、链接地址
使用 feapder 内置方法 xpath 去解析数据即可
def parse(self, request, response): # print(response.text) card_elements = response.xpath('//div[@class="cc-cd"]') # 过滤出对应的卡片元素【什么值得买】 buy_good_element = [card_element for card_element in card_elements if card_element.xpath('.//div[@class="cc-cd-is"]//span/text()').extract_first() == '什么值得买'][0] # 获取内部文章标题及地址 a_elements = buy_good_element.xpath('.//div[@class="cc-cd-cb nano"]//a') for a_element in a_elements: # 标题和链接 title = a_element.xpath('.//span[@class="t"]/text()').extract_first() href = a_element.xpath('.//@href').extract_first() # 再次下发新任务,并带上文章标题 yield feapder.Request(href, download_midware=self.download_midware, callback=self.parser_detail_page, title=title)
第四步,爬取详情页面数据
上一步下发新的任务,通过关键字「 callback 」指定回调函数,最后在 parser_detail_page 中对详情页面进行数据解析
def parser_detail_page(self, request, response): """ 解析文章详情数据 :param request: :param response: :return: """ title = request.title url = request.url # 解析文章详情页面,获取点赞、收藏、评论数目及作者名称 author = response.xpath('//a[@class="author-title"]/text()').extract_first().strip() print("作者:", author, '文章标题:', title, "地址:", url) desc_elements = response.xpath('//span[@class="xilie"]/span') print("desc数目:", len(desc_elements)) # 点赞 like_count = int(re.findall('\d+', desc_elements[1].xpath('./text()').extract_first())[0]) # 收藏 collection_count = int(re.findall('\d+', desc_elements[2].xpath('./text()').extract_first())[0]) # 评论 comment_count = int(re.findall('\d+', desc_elements[3].xpath('./text()').extract_first())[0]) print("点赞:", like_count, "收藏:", collection_count, "评论:", comment_count)
使用上面实例化的数据库对象执行 SQL,将数据插入到数据库中即可
# 插入数据库 sql = "INSERT INTO topic(title,auth,like_count,collection,comment) values('%s','%s','%s','%d','%d')" % ( title, author, like_count, collection_count, comment_count) # 执行 self.db.execute(sql)
看完上述内容,你们掌握怎么在python中使用feapde爬虫框架的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注亿速云行业资讯频道,感谢各位的阅读!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。