温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

如何分析Spark名词解释及关系

发布时间:2021-12-17 11:01:01 来源:亿速云 阅读:142 作者:柒染 栏目:大数据

如何分析Spark名词解释及关系,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。

名词

driver

driver物理层面是指输入提交spark命令的启动程序,逻辑层面是负责调度spark运行流程包括向master申请资源,拆解任务,代码层面就是sparkcontext。

worker

worker指可以运行的物理节点。

executor

executor指执行spark任务的处理程序,对java而言就是拥有一个jvm的进程。一个worker节点可以运行多个executor,只要有足够的资源。

job

job是指一次action,rdd(rdd在这里就不解释了)操作分成两大类型,一类是transform,一类是action,当涉及到action的时候,spark就会把上次action之后到本次action的所有rdd操作用一个job完成。

stage

stage是指一次shuffle,rdd在操作的时候分为宽依赖(shuffle dependency)和窄依赖(narraw  dependency),如下图所示。而宽依赖就是指shuffle。

应某人要求再解释一下什么是窄依赖,就是父rdd的每个分区都只作用在一个子rdd的分区中,原话是这么说的 each partition of the  parent RDD is used by at most one partition of the child RDD。

如何分析Spark名词解释及关系

task

task是spark的最小执行单位,一般而言执行一个partition的操作就是一个task,关于partition的概念,这里稍微解释一下。

spark的默认分区数是2,并且最小分区也是2,改变分区数的方式有很多,大概有三个阶段

1.启动阶段,通过 spark.default.parallelism 来初始化默认分区数

2.生成rdd阶段,可通过参数配置

3.rdd操作阶段,默认继承父rdd的partition数,最终结果受shuffle操作和非shuffle操作的影响,不同操作的结果partition数不同

名词关系

物理关系

官网给出的spark运行架构图

如何分析Spark名词解释及关系

逻辑关系

下图是总结的逻辑关系图,如果有不对之处,还望提醒。

如何分析Spark名词解释及关系

关于如何分析Spark名词解释及关系问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注亿速云行业资讯频道了解更多相关知识。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI