温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

常见比较排序算法的比较

发布时间:2020-06-17 11:29:39 来源:网络 阅读:518 作者:2013221 栏目:编程语言
  • 几种常见的排序算法之比较

  排序的基本概念以及其算法的种类,介绍几种常见的排序算法的算法:冒泡排序、选择排序、插入排序、归并排序、快速排序、希尔排序的算法和分析它们各自的复杂度,然后以表格的形式,清晰直观的表现出它们的复杂度的不同。在研究学习了之前几种排序算法的基础上,讨论发现一种新的排序算法,并通过了进一步的探索,找到了新的排序算法较之前几种算法的优势与不足。


  排序算法,是计算机编程中的一个常见问题。在日常的数据处理中,面对纷繁的数据,我们也许有成百上千种要求,因此只有当数据经过恰当的排序后,才能更符合用户的要求。因此,在过去的数十载里,程序员们为我们留下了几种经典的排序算法,他们都是智慧的结晶。本文将带领读者探索这些有趣的排序算法,其中包括介绍排序算法的某些基本概念以及几种常见算法,分析这些算法的时间复杂度,同时在最后将介绍我们独创的一种排序方法,以供读者参考评判。


  • 几种常见算法的介绍及复杂度分析

1.基本概念

1.1稳定排序(stable sort)和非稳定排序

  稳定排序是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,。反之,就是非稳定的排序。

  比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,

则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变成a1,a4,a2,a3,a5就不是稳定的了。

1.2内排序( internal sorting )和外排序( external sorting)

  在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序; 在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。

1.3算法的时间复杂度和空间复杂度

所谓算法的时间复杂度,是指执行算法所需要的计算工作量。 一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。


2.几种常见算法

2.1冒泡排序 (Bubble Sort

  冒泡排序方法是最简单的排序方法。这种方法的基本思想是,将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。在冒泡排序算法中我们要对这个“气泡”序列处理若干遍。所谓一遍处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。如果发现两个相邻元素的顺序不对,即“轻”的元素在下面,就交换它们的位置。显然,处理一遍之后,“最轻”的元素就浮到了最高位置;处理二遍之后,“次轻”的元素就浮到了次高位置。在作第二遍处理时,由于最高位置上的元素已是“最轻”元素,所以不必检查。一般地,第i遍处理时,不必检查第i高位置以上的元素,因为经过前面i-1遍的处理,它们已正确地排好序。

冒泡排序是稳定的。算法时间复杂度是O(n ^2)。

2.2选择排序 (Selection Sort)

  选择排序的基本思想是对待排序的记录序列进行n-1遍的处理,第i遍处理是将L[i..n]中最小者与L[i]交换位置。这样,经过i遍处理之后,前i个记录的位置已经是正确的了。选择排序是不稳定的。算法复杂度是O(n ^2 )。

2.3插入排序 (Insertion Sort)

  插入排序的基本思想是,经过i-1遍处理后,L[1..i-1]己排好序。第i遍处理仅将L[i]插入L[1..i-1]的适当位置,使得L[1..i]又是排好序的序列。要达到这个目的,我们可以用顺序比较的方法。首先比较L[i]和L[i-1],如果L[i-1]≤ L[i],则L[1..i]已排好序,第i遍处理就结束了;否则交换L[i]与L[i-1]的位置,继续比较L[i-1]和L[i-2],直到找到某一个位置j(1≤j≤i-1),使得L[j] ≤L[j+1]时为止。图1演示了对4个元素进行插入排序的过程,共需要(a),(b),(c)三次插入。直接插入排序是稳定的。算法时间复杂度是O(n ^2)

2.4堆排序

  堆排序是一种树形选择排序,在排序过程中,将A[n]看成是完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。堆排序是不稳定的。算法时间复杂度O(nlog n)。

2.5归并排序

  设有两个有序(升序)序列存储在同一数组中相邻的位置上,不妨设为A[l..m],A[m+1..h],将它们归并为一个有序数列,并存储在A[l..h]。其时间复杂度无论是在最好情况下还是在最坏情况下均是O(nlog2n)。

2.6快速排序

  快速排序是对冒泡排序的一种本质改进。它的基本思想是通过一趟扫描后,使得排序序列的长度能大幅度地减少。在冒泡排序中,一次扫描只能确保最大数值的数移到正确位置,而待排序序列的长度可能只减少1。快速排序通过一趟扫描,就能确保某个数(以它为基准点吧)的左边各数都比它小,右边各数都比它大。然后又用同样的方法处理它左右两边的数,直到基准点的左右只有一个元素为止。快速排序是不稳定的。最理想情况算法时间复杂度O(nlog2n),最坏O(n ^2)。

2.7希尔排序

 在直接插入排序算法中,每次插入一个数,使有序序列只增加1个节点,并且对插入下一个数没有提供任何帮助。如果比较相隔较远距离(称为 增量)的数,使得数移动时能跨过多个元素,则进行一次比较就可能消除多个元素交换。D.L.shell于1959年在以他名字命名的排序算法中实现了这一思想。算法先将要排序的一组数按某个增量d分成若干组,每组中记录的下标相差d.对每组中全部元素进行排序,然后再用一个较小的增量对它进行,在每组中再进行排序。当增量减到1时,整个要排序的数被分成一组,排序完成。希尔排序是不稳定的。算法时间复杂度是O(n2)。


  • 各排序算法时间复杂度比较

写出下列算法的时间复杂度。

(1)冒泡排序;

(2)选择排序;

(3)插入排序;

(4)快速排序;

(5)堆排序;

(6)归并排序;

答案:

冒泡排序算法时间复杂度是O(n^2)。

选择排序算法复杂度是O(n^2)。

插入排序算法时间复杂度是O(n^2)

快速排序快速排序是不稳定的。最理想情况算法时间复杂度O(nlog2n),最坏O(n^2)。

堆排序算法时间复杂度O(nlogn)。

归并排序的时间复杂度是O(nlog2n)。


常用的排序算法的时间复杂度和空间复杂度

排序法    最差时间分析 平均时间复杂度 稳定度 空间复杂度

冒泡排序 O(n2)       O(n2)    稳定  O(1)

快速排序 O(n2)      O(n*log2n) 不稳定 O(log2n)~O(n)

选择排序 O(n2)       O(n2)     稳定  O(1)

二叉树排序 O(n2)     O(n*log2n) 不一顶  O(n)

插入排序      O(n2)       O(n2)      稳定  O(1)

堆排序     O(n*log2n) O(n*log2n) 不稳定  O(1)

希尔排序 O        O       不稳定 O(1)

1、时间复杂度 

(1)时间频度一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。 

(2)时间复杂度在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。 

在各种不同算法中,若算法中语句执行次数为一个常数,则时间复杂度为O(1),另外,在时间频度不相同时,时间复杂度有可能相同,如T(n)=n2+3n+4与T(n)=4n2+2n+1它们的频度不同,但时间复杂度相同,都为O(n2)。按数量级递增排列,常见的时间复杂度有:常数阶O(1),对数阶O(log2n),线性阶O(n), 线性对数阶O(nlog2n),平方阶O(n2),立方阶O(n3),..., k次方阶O(nk),指数阶O(2n)。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。 2、空间复杂度与时间复杂度类似,空间复杂度是指算法在计算机内执行时所需存储空间的度量。记作: S(n)=O(f(n)) 我们一般所讨论的是除正常占用内存开销外的辅助存储单元规模。讨论方法与时间复杂度类似,不再赘述。 

(3)渐进时间复杂度评价算法时间性能   主要用算法时间复杂度的数量级(即算法的渐近时间复杂度)评价一个算法的时间性能。

2、类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)S(n)定义为该算法所耗费的存储空间,它也是问题规模n的函数。渐近空间复杂度也常常简称为空间复杂度。 

空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。一个算法在计算机存储器上所占用的存储空间,包括存储算法本身所占用的存储空间,算法的输入输出数据所占用的存储空间和算法在运行过程中临时占用的存储空间这三个方面。算法的输入输出数据所占用的存储空间是由要解决的问题决定的,是通过参数表由调用函数传递而来的,它不随本算法的不同而改变。存储算法本身所占用的存储空间与算法书写的长短成正比,要压缩这方面的存储空间,就必须编写出较短的算法。算法在运行过程中临时占用的存储空间随算法的不同而异,有的算法只需要占用少量的临时工作单元,而且不随问题规模的大小而改变,我们称这种算法是“就地/"进行的,是节省存储的算法,如这一节介绍过的几个算法都是如此;有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如将在第九章介绍的快速排序和归并排序算法就属于这种情况。

如当一个算法的空间复杂度为一个常量,即不随被处理数据量n的大小而改变时,可表示为O(1);当一个算法的空间复杂度与以2为底的n的对数成正比时,可表示为0(10g2n);当一个算法的空I司复杂度与n成线性比例关系时,可表示为0(n).若形参为数组,则只需要为它分配一个存储由实参传送来的一个地址指针的空间,即一个机器字长空间;若形参为引用方式,则也只需要为其分配存储一个地址的空间,用它来存储对应实参变量的地址,以便由系统自动引用实参变量。


向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI