在Linux下使用C++进行并发编程,主要有以下几种方式:
POSIX Threads 是一种标准的线程库,可以在大多数类Unix系统上使用。
包含头文件:
#include <pthread.h>
定义线程函数:
void* thread_function(void* arg) {
// 线程执行的代码
return NULL;
}
创建线程:
pthread_t thread_id;
int result = pthread_create(&thread_id, NULL, thread_function, NULL);
if (result != 0) {
// 处理错误
}
等待线程结束:
pthread_join(thread_id, NULL);
#include <iostream>
#include <pthread.h>
void* thread_function(void* arg) {
std::cout << "Thread is running" << std::endl;
return NULL;
}
int main() {
pthread_t thread_id;
int result = pthread_create(&thread_id, NULL, thread_function, NULL);
if (result != 0) {
std::cerr << "Error creating thread" << std::endl;
return 1;
}
pthread_join(thread_id, NULL);
std::cout << "Thread finished" << std::endl;
return 0;
}
C++11 引入了标准库线程支持,提供了更现代和易用的接口。
包含头文件:
#include <thread>
定义线程函数:
void thread_function() {
// 线程执行的代码
}
创建线程:
std::thread t(thread_function);
等待线程结束:
t.join();
#include <iostream>
#include <thread>
void thread_function() {
std::cout << "Thread is running" << std::endl;
}
int main() {
std::thread t(thread_function);
t.join();
std::cout << "Thread finished" << std::endl;
return 0;
}
std::async 提供了一种更高级的方式来执行异步任务,它会自动管理线程的创建和销毁。
包含头文件:
#include <future>
定义任务函数:
int task_function() {
// 任务执行的代码
return 42;
}
启动异步任务:
std::future<int> result = std::async(std::launch::async, task_function);
获取任务结果:
int value = result.get();
#include <iostream>
#include <future>
int task_function() {
std::cout << "Task is running" << std::endl;
return 42;
}
int main() {
std::future<int> result = std::async(std::launch::async, task_function);
std::cout << "Waiting for task to finish..." << std::endl;
int value = result.get();
std::cout << "Task finished with result: " << value << std::endl;
return 0;
}
在多线程编程中,条件变量和互斥锁是常用的同步机制。
#include <iostream>
#include <thread>
#include <mutex>
#include <condition_variable>
std::mutex mtx;
std::condition_variable cv;
bool ready = false;
void worker_thread() {
std::unique_lock<std::mutex> lock(mtx);
cv.wait(lock, []{ return ready; });
std::cout << "Worker thread is processing data" << std::endl;
}
void trigger_work() {
std::lock_guard<std::mutex> lock(mtx);
ready = true;
cv.notify_one();
}
int main() {
std::thread worker(worker_thread);
std::this_thread::sleep_for(std::chrono::seconds(1));
trigger_work();
worker.join();
return 0;
}
选择哪种方式取决于具体的需求和场景。