以下是一份Ubuntu Python机器学习入门教程:
sudo apt update和sudo apt install python3 python3-pip。sudo apt install python3-venv,然后python3 -m venv myenv,最后source myenv/bin/activate。pip install命令安装NumPy、Pandas、scikit - learn等库,如pip3 install numpy pandas scikit - learn。以线性回归为例,使用scikit - learn库:
linear_regression.py。import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
# 生成示例数据
X = np.random.rand(100, 1)
y = 2 + 3 * X
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建并训练模型
model = LinearRegression()
model.fit(X_train, y_train)
# 预测和评估
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)
python3 linear_regression.py。可以参考在线课程如Coursera、edX等,也可查阅scikit - learn、TensorFlow等官方文档,还可阅读《Python机器学习》等书籍。