在Linux上构建PyTorch模型的步骤如下:
安装Python和pip:
sudo apt update
sudo apt install python3 python3-pip
安装PyTorch:
pip3 install torch torchvision torchaudio
或者,如果你需要CUDA支持:pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
请将cu113替换为你安装的CUDA版本。验证安装:
python3
>>> import torch
>>> print(torch.__version__)
构建模型:
import torch
import torch.nn as nn
import torch.nn.functional as F
nn.Module,并实现__init__和forward方法:class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 定义网络层
self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=3)
self.fc1 = nn.Linear(in_features=6*6*6, out_features=10)
def forward(self, x):
# 定义前向传播
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = x.view(-1, self.num_flat_features(x))
x = self.fc1(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features
net = Net()
训练模型:
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.01)
测试模型:
保存和加载模型:
torch.save(net.state_dict(), 'model.pth')
net = Net()
net.load_state_dict(torch.load('model.pth'))
以上步骤提供了一个基本的框架,你可以根据自己的需求调整网络结构、数据集和训练过程。记得在构建模型时遵循最佳实践,例如使用适当的数据增强技术、监控过拟合等。