在Linux环境下使用C++进行并发编程时,锁机制是确保多个线程安全访问共享资源的关键。以下是一些常用的锁机制及其在C++中的实现方式:
互斥锁是最基本的同步机制,用于保护临界区,确保同一时间只有一个线程可以访问。
std::mutex#include <iostream>
#include <thread>
#include <mutex>
std::mutex mtx; // 全局互斥锁
void print_block(int n, char c) {
mtx.lock(); // 加锁
for (int i = 0; i < n; ++i) {
std::cout << c;
}
std::cout << '\n';
mtx.unlock(); // 解锁
}
int main() {
std::thread th1(print_block, 50, '*');
std::thread th2(print_block, 50, '$');
th1.join();
th2.join();
return 0;
}
std::lock_guardstd::lock_guard是一个方便的RAII(Resource Acquisition Is Initialization)风格的锁管理类,它在构造时加锁,在析构时自动解锁。
#include <iostream>
#include <thread>
#include <mutex>
std::mutex mtx;
void print_block(int n, char c) {
std::lock_guard<std::mutex> guard(mtx); // 自动加锁和解锁
for (int i = 0; i < n; ++i) {
std::cout << c;
}
std::cout << '\n';
}
int main() {
std::thread th1(print_block, 50, '*');
std::thread th2(print_block, 50, '$');
th1.join();
th2.join();
return 0;
}
递归锁允许同一个线程多次获取同一个锁而不会导致死锁。
std::recursive_mutex#include <iostream>
#include <thread>
#include <mutex>
std::recursive_mutex mtx;
void print_block(int n, char c, int count = 0) {
if (count >= 2) return; // 防止无限递归
mtx.lock(); // 加锁
std::cout << "Thread " << std::this_thread::get_id() << " is printing block\n";
print_block(n, c, count + 1); // 递归调用
mtx.unlock(); // 解锁
}
int main() {
std::thread th1(print_block, 50, '*');
std::thread th2(print_block, 50, '$');
th1.join();
th2.join();
return 0;
}
条件变量用于线程间的等待和通知机制。
std::condition_variable#include <iostream>
#include <thread>
#include <mutex>
#include <condition_variable>
std::mutex mtx;
std::condition_variable cv;
bool ready = false;
void print_id(int id) {
std::unique_lock<std::mutex> lck(mtx);
cv.wait(lck, []{ return ready; }); // 等待条件变量
std::cout << "Thread " << id << '\n';
}
void go() {
std::lock_guard<std::mutex> lck(mtx);
ready = true;
cv.notify_all(); // 通知所有等待的线程
}
int main() {
std::thread threads[10];
for (int i = 0; i < 10; ++i) {
threads[i] = std::thread(print_id, i);
}
std::this_thread::sleep_for(std::chrono::seconds(1));
go();
for (auto& th : threads) {
th.join();
}
return 0;
}
读写锁允许多个读线程同时访问共享资源,但写线程访问时会阻塞其他读线程和写线程。
std::shared_mutex#include <iostream>
#include <thread>
#include <shared_mutex>
std::shared_mutex rw_mtx;
int shared_data = 0;
void read_data(int id) {
std::shared_lock<std::shared_mutex> lock(rw_mtx); // 共享锁
std::cout << "Reader " << id << " reads data: " << shared_data << '\n';
}
void write_data(int value) {
std::unique_lock<std::shared_mutex> lock(rw_mtx); // 独占锁
shared_data = value;
std::cout << "Writer writes data: " << shared_data << '\n';
}
int main() {
std::thread readers[5];
std::thread writer(write_data, 42);
for (int i = 0; i < 5; ++i) {
readers[i] = std::thread(read_data, i);
}
for (auto& th : readers) {
th.join();
}
writer.join();
return 0;
}
在Linux环境下使用C++进行并发编程时,合理使用锁机制可以有效避免数据竞争和死锁问题。C++11及以后的版本提供了丰富的同步原语,如std::mutex、std::lock_guard、std::condition_variable和std::shared_mutex,这些工具可以帮助开发者更方便地实现线程安全的代码。