Ubuntu 上 PyTorch 依赖管理实践
一 环境隔离与基础准备
python3 -m venv venv && source venv/bin/activatepip install -U pipsudo apt update && sudo apt install -y build-essential cmake git wget unzip yasm pkg-config libopenblas-dev liblapack-dev libjpeg-dev libpng-dev二 安装 PyTorch 与对应依赖
pip install torch==2.6.0 torchvision==0.17.0 torchaudio==2.6.0 --index-url https://download.pytorch.org/whl/cpupip install torch==2.6.0+cu126 torchvision==0.17.0+cu126 torchaudio==2.6.0+cu126 --index-url https://download.pytorch.org/whl/cu126conda install pytorch torchvision torchaudio cudatoolkit=11.8 -c pytorch -c nvidia三 依赖记录与版本锁定
pip freeze > requirements.txtpip install -r requirements.txtpip install pip-toolsecho "torch==2.6.0" > requirements.inpip-compile requirements.in -o requirements.txtpip-sync requirements.txt(精确对齐环境)conda env export > environment.ymlconda env create -f environment.yml四 多环境切换与多平台配置
conda create -n torch118 python=3.10 pytorch torchvision torchaudio cudatoolkit=11.8 -c pytorch -c nvidiaconda activate torch118pyproject.toml 中对不同平台指定源/版本):
torch = [{version = "2.6.0", source = "pytorch-cpu", markers = "platform_machine == 'x86_64'"}]五 验证与常见问题处理
python - <<'PY' import torch, sys print("torch:", torch.__version__, "cuda:", torch.cuda.is_available()) print("python:", sys.version) PYpip check 排查;必要时 pip install -U 包名 或回退版本。