温馨提示×

Debian PyTorch如何进行超参数调优

小樊
40
2025-11-25 12:17:55
栏目: 智能运维

在Debian系统上进行PyTorch模型的超参数调优,可以采用多种方法。以下是一些常用的超参数调优策略和工具:

1. 网格搜索(Grid Search)

网格搜索是一种穷举搜索方法,通过遍历所有可能的超参数组合来找到最佳参数。

from sklearn.model_selection import GridSearchCV
from skorch import NeuralNetClassifier
import torch.nn as nn

# 定义模型
class Net(nn.Module):
    def __init__(self, n_hidden):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(784, n_hidden)
        self.fc2 = nn.Linear(n_hidden, 10)

    def forward(self, x):
        x = x.view(-1, 784)
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

net = NeuralNetClassifier(
    Net,
    max_epochs=10,
    lr=0.1
)

# 定义超参数网格
params = {
    'lr': [0.01, 0.1, 0.2],
    'module__n_hidden': [50, 100, 150]
}

# 网格搜索
gs = GridSearchCV(net, params, refit=False, cv=3, verbose=0)
gs.fit(X_train, y_train)

print(gs.best_score_, gs.best_params_)

2. 随机搜索(Random Search)

随机搜索是一种基于概率分布的超参数优化方法,它在给定的范围内随机选择超参数组合。

from skopt import BayesSearchCV
from skorch import NeuralNetClassifier

# 定义模型
class Net(nn.Module):
    def __init__(self, n_hidden):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(784, n_hidden)
        self.fc2 = nn.Linear(n_hidden, 10)

    def forward(self, x):
        x = x.view(-1, 784)
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

net = NeuralNetClassifier(
    Net,
    max_epochs=10,
    lr=0.1
)

# 定义超参数分布
params = {
    'lr': (0.01, 0.2),
    'module__n_hidden': (50, 150)
}

# 随机搜索
bs = BayesSearchCV(net, params, n_iter=32, refit=False, cv=3, verbose=0)
bs.fit(X_train, y_train)

print(bs.best_score_, bs.best_params_)

3. 贝叶斯优化(Bayesian Optimization)

贝叶斯优化使用概率模型来预测哪些超参数组合可能会产生更好的结果。

from skopt import gp_minimize
from skorch import NeuralNetClassifier

# 定义目标函数
def objective(params):
    lr, n_hidden = params
    net = NeuralNetClassifier(
        Net,
        max_epochs=10,
        lr=lr,
        module__n_hidden=n_hidden
    )
    score = -np.mean(cross_val_score(net, X_train, y_train, cv=3))
    return score

# 定义超参数范围
bounds = [(0.01, 0.2), (50, 150)]

# 贝叶斯优化
res_gp = gp_minimize(objective, bounds, n_calls=32, random_state=0)

print("Best score: %f" % res_gp.fun)
print("Best parameters: lr = %f, n_hidden = %d" % (res_gp.x[0], res_gp.x[1]))

4. 使用Optuna

Optuna是一个自动化的超参数优化框架,支持多种搜索算法。

import optuna
from skorch import NeuralNetClassifier

# 定义目标函数
def objective(trial):
    lr = trial.suggest_loguniform('lr', 0.01, 0.2)
    n_hidden = trial.suggest_int('n_hidden', 50, 150)
    
    net = NeuralNetClassifier(
        Net,
        max_epochs=10,
        lr=lr,
        module__n_hidden=n_hidden
    )
    
    score = -np.mean(cross_val_score(net, X_train, y_train, cv=3))
    return score

# 创建Optuna study
study = optuna.create_study(direction='minimize')
study.optimize(objective, n_trials=32)

print("Best score: %f" % study.best_value)
print("Best parameters: lr = %f, n_hidden = %d" % (study.best_params['lr'], study.best_params['n_hidden']))

总结

以上方法都可以在Debian系统上进行PyTorch模型的超参数调优。选择哪种方法取决于你的具体需求和计算资源。网格搜索适用于超参数空间较小的情况,随机搜索和贝叶斯优化适用于超参数空间较大的情况,而Optuna则提供了一个灵活且自动化的解决方案。

0