Linux系统可以通过多种方式助力Hadoop性能调优。以下是一些关键步骤和策略:
ulimit -n 65536
net.core.rmem_max = 16777216
net.core.wmem_max = 16777216
net.ipv4.tcp_syncookies = 1
net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_fin_timeout = 30
echo never > /sys/kernel/mm/hugepages/hugepages-2MiB/nr_hugepages
<property>
<name>mapreduce.map.memory.mb</name>
<value>4096</value>
</property>
<property>
<name>mapreduce.reduce.memory.mb</name>
<value>8192</value>
</property>
<property>
<name>mapreduce.map.cpu.vcores</name>
<value>4</value>
</property>
<property>
<name>mapreduce.reduce.cpu.vcores</name>
<value>8</value>
</property>
<property>
<name>dfs.blocksize</name>
<value>268435456</value> <!-- 256MB -->
</property>
<property>
<name>dfs.replication</name>
<value>3</value>
</property>
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>16384</value>
</property>
<property>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>8</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
</property>
通过上述步骤,可以显著提升Hadoop集群的性能和稳定性。不过,具体的调优策略需要根据实际的硬件配置、工作负载和应用场景进行调整。