温馨提示×

Ubuntu Nodejs如何进行并发处理

小樊
50
2025-10-09 16:15:26
栏目: 编程语言

在Ubuntu上使用Node.js进行并发处理,可以通过以下几种方法实现:

  1. 异步编程:Node.js的核心特性之一是异步I/O。通过使用回调函数、Promises或者async/await语法,可以实现非阻塞的并发操作。
const fs = require('fs').promises;

async function readFiles() {
  try {
    const file1 = await fs.readFile('file1.txt', 'utf-8');
    const file2 = await fs.readFile('file2.txt', 'utf-8');
    console.log(file1, file2);
  } catch (error) {
    console.error(error);
  }
}

readFiles();
  1. 使用worker_threads模块:Node.js的worker_threads模块允许你在多个线程中运行JavaScript代码,从而实现并发处理。这对于CPU密集型任务非常有用。
const { Worker } = require('worker_threads');

function runWorker(workerData) {
  return new Promise((resolve, reject) => {
    const worker = new Worker('./worker.js', { workerData });
    worker.on('message', resolve);
    worker.on('error', reject);
    worker.on('exit', (code) => {
      if (code !== 0) {
        reject(new Error(`Worker stopped with exit code ${code}`));
      }
    });
  });
}

runWorker('Hello from main thread')
  .then((result) => console.log(result))
  .catch((error) => console.error(error));

worker.js文件中:

const { parentPort } = require('worker_threads');

parentPort.on('message', (message) => {
  console.log(`Message from main thread: ${message}`);
  parentPort.postMessage('Hello from worker thread');
});
  1. 使用cluster模块:Node.js的cluster模块允许你创建多个子进程(workers),这些子进程共享相同的服务器端口。这样可以充分利用多核CPU,提高并发处理能力。
const cluster = require('cluster');
const http = require('http');
const numCPUs = require('os').cpus().length;

if (cluster.isMaster) {
  console.log(`Master ${process.pid} is running`);

  // Fork workers.
  for (let i = 0; i < numCPUs; i++) {
    cluster.fork();
  }

  cluster.on('exit', (worker, code, signal) => {
    console.log(`worker ${worker.process.pid} died`);
  });
} else {
  // Workers can share any TCP connection
  // In this case, it is an HTTP server
  http.createServer((req, res) => {
    res.writeHead(200);
    res.end('hello world\n');
  }).listen(8000);

  console.log(`Worker ${process.pid} started`);
}
  1. 使用第三方库:有许多第三方库可以帮助你实现并发处理,例如asyncbluebird等。这些库提供了许多实用的功能,如并行执行、限流、重试等。

选择合适的方法取决于你的需求和应用场景。对于I/O密集型任务,异步编程通常足够;而对于CPU密集型任务,可以考虑使用worker_threads或cluster模块。

0