在Ubuntu中进行C++并发编程时,遵循一些最佳实践可以帮助你编写更安全、更高效的代码。以下是一些推荐的实践:
C++11引入了标准库中的并发支持,包括<thread>、<mutex>、<condition_variable>等。尽量使用这些标准库组件来实现并发,因为它们提供了跨平台的解决方案,并且经过了广泛的测试。
#include <iostream>
#include <thread>
#include <mutex>
std::mutex mtx;
void print_block(int n, char c) {
std::lock_guard<std::mutex> guard(mtx);
for (int i = 0; i < n; ++i) {
std::cout << c;
}
std::cout << '\n';
}
int main() {
std::thread th1(print_block, 50, '*');
std::thread th2(print_block, 50, '$');
th1.join();
th2.join();
return 0;
}
尽量减少线程间的共享状态,这样可以降低锁的使用频率,从而提高性能并减少死锁的风险。
使用RAII(Resource Acquisition Is Initialization)技术来管理锁,例如std::lock_guard或std::unique_lock。这样可以确保锁在作用域结束时自动释放。
std::lock_guard<std::mutex> guard(mtx);
// 临界区代码
确保在使用多个锁时遵循一致的锁定顺序,并且尽量减少锁的粒度。使用std::lock函数来同时锁定多个互斥量,以避免死锁。
std::mutex mtx1, mtx2;
void thread1() {
std::lock(mtx1, mtx2);
std::lock_guard<std::mutex> lock1(mtx1, std::adopt_lock);
std::lock_guard<std::mutex> lock2(mtx2, std::adopt_lock);
// 临界区代码
}
void thread2() {
std::lock(mtx1, mtx2);
std::lock_guard<std::mutex> lock1(mtx1, std::adopt_lock);
std::lock_guard<std::mutex> lock2(mtx2, std::adopt_lock);
// 临界区代码
}
使用std::condition_variable来实现线程间的同步,特别是在生产者-消费者问题中。
#include <iostream>
#include <thread>
#include <mutex>
#include <condition_variable>
std::mutex mtx;
std::condition_variable cv;
bool ready = false;
void print_id(int id) {
std::unique_lock<std::mutex> lock(mtx);
cv.wait(lock, []{ return ready; });
std::cout << "Thread " << id << '\n';
}
void go() {
std::lock_guard<std::mutex> lock(mtx);
ready = true;
cv.notify_all();
}
int main() {
std::thread threads[10];
for (int i = 0; i < 10; ++i) {
threads[i] = std::thread(print_id, i);
}
std::this_thread::sleep_for(std::chrono::seconds(1));
go();
for (auto& th : threads) {
th.join();
}
return 0;
}
对于简单的共享数据,可以使用std::atomic来实现无锁编程,这样可以提高性能。
#include <atomic>
#include <thread>
#include <iostream>
std::atomic<int> counter(0);
void increment() {
for (int i = 0; i < 100000; ++i) {
counter++;
}
}
int main() {
std::thread t1(increment);
std::thread t2(increment);
t1.join();
t2.join();
std::cout << "Counter: " << counter << '\n';
return 0;
}
对于大量的短任务,使用线程池可以减少线程创建和销毁的开销。
#include <iostream>
#include <vector>
#include <thread>
#include <queue>
#include <functional>
#include <future>
#include <mutex>
#include <condition_variable>
class ThreadPool {
public:
ThreadPool(size_t threads) : stop(false) {
for (size_t i = 0; i < threads; ++i) {
workers.emplace_back([this] {
for (;;) {
std::function<void()> task;
{
std::unique_lock<std::mutex> lock(this->queue_mutex);
this->condition.wait(lock, [this] { return this->stop || !this->tasks.empty(); });
if (this->stop && this->tasks.empty()) {
return;
}
task = std::move(this->tasks.front());
this->tasks.pop();
}
task();
}
});
}
}
template<class F, class... Args>
auto enqueue(F&& f, Args&&... args) -> std::future<typename std::result_of<F(Args...)>::type> {
using return_type = typename std::result_of<F(Args...)>::type;
auto task = std::make_shared<std::packaged_task<return_type()>>(
std::bind(std::forward<F>(f), std::forward<Args>(args)...)
);
std::future<return_type> res = task->get_future();
{
std::unique_lock<std::mutex> lock(queue_mutex);
if (stop) {
throw std::runtime_error("enqueue on stopped ThreadPool");
}
tasks.emplace([task]() { (*task)(); });
}
condition.notify_one();
return res;
}
~ThreadPool() {
{
std::unique_lock<std::mutex> lock(queue_mutex);
stop = true;
}
condition.notify_all();
for (std::thread& worker : workers) {
worker.join();
}
}
private:
std::vector<std::thread> workers;
std::queue<std::function<void()>> tasks;
std::mutex queue_mutex;
std::condition_variable condition;
bool stop;
};
int main() {
ThreadPool pool(4);
std::vector<std::future<int>> results;
for (int i = 0; i < 8; ++i) {
results.emplace_back(
pool.enqueue([i] {
std::cout << "hello "<< i << '\n';
std::this_thread::sleep_for(std::chrono::seconds(1));
std::cout << "world "<< i << '\n';
return i * i;
})
);
}
for (auto&& result : results) {
std::cout << result.get() << ' ';
}
std::cout << '\n';
return 0;
}
并发程序的测试和调试通常比较复杂。使用工具如gdb、valgrind和helgrind来检测竞态条件和死锁。此外,编写单元测试和集成测试来验证并发代码的正确性。
通过遵循这些最佳实践,你可以在Ubuntu中编写出更安全、更高效的C++并发程序。