在Linux版PyTorch中进行模型训练,可以按照以下步骤进行:
pip install torch torchvision torchaudio
或者使用CUDA版本:pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
torchvision.datasets模块来加载常见的数据集,如CIFAR-10、MNIST等。torch.utils.data.DataLoader来加载数据集,并进行批处理和数据增强。以下是一个简单的示例代码,展示了如何在Linux版PyTorch中进行模型训练:
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
# 定义数据预处理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
# 加载数据集
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(28 * 28, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = x.view(-1, 28 * 28)
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
model = Net()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
# 训练模型
num_epochs = 5
for epoch in range(num_epochs):
model.train()
for images, labels in train_loader:
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
# 验证模型
model.eval()
correct = 0
total = 0
with torch.no_grad():
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Accuracy of the network on the 10000 test images: {100 * correct / total:.2f}%')
torch.autograd.set_detect_anomaly(True)来检测梯度计算中的异常。通过以上步骤,你可以在Linux版PyTorch中进行模型训练。希望这些信息对你有所帮助!