在Linux系统上使用PyTorch时,以下是一些常用的命令和操作:
pip install torch torchvision torchaudio
conda install pytorch torchvision torchaudio -c pytorch
python -c "import torch; print(torch.__version__)"
python -c "import torchvision; print(torchvision.__version__)"
export CUDA_HOME=/usr/local/cuda
export PATH=$CUDA_HOME/bin:$PATH
export LD_LIBRARY_PATH=$CUDA_HOME/lib:$LD_LIBRARY_PATH
import torch
print("PyTorch version:", torch.__version__)
print("CUDA available:", torch.cuda.is_available())
import torch
x = torch.tensor([1.0, 2.0, 3.0])
y = torch.ones(3)
print(x + y)
import numpy as np
a = np.array([1, 2, 3])
b = torch.from_numpy(a)
c = b.numpy()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
x = torch.rand(3, 3).to(device)
torchrun --nproc_per_node=2 ddp_demo.py --batchSize 64 --epochs 10
torch.cuda.empty_cache()
export CUDA_VISIBLE_DEVICES=0,1
cp source_file_path destination_file_path
cp -r source_folder_path destination_folder_path
rm -f file_path
rm -r folder_path
source activate environment_name
exit()
```或
```bash
ctrl+D
这些命令涵盖了从环境配置、安装验证到基本操作、分布式训练以及性能优化的各个方面,应该能满足大多数PyTorch用户在Linux系统上的需求。