温馨提示×

PyTorch在Debian上的使用教程是什么

小樊
63
2025-09-07 11:33:37
栏目: 智能运维

以下是在Debian上使用PyTorch的教程:

安装PyTorch

  • 更新系统包sudo apt updatesudo apt upgrade -y
  • 安装Python和pipsudo apt install python3 python3-pip -y
  • 创建虚拟环境(可选)python3 -m venv pytorch_envsource pytorch_env/bin/activate
  • 安装PyTorch
    • CPU版本pip install torch torchvision torchaudio
    • GPU版本:先安装NVIDIA驱动、CUDA和cuDNN,再执行pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117(以CUDA 11.7为例)。

验证安装

在Python环境中输入:

import torch
print(torch.__version__)
print(torch.cuda.is_available())

使用PyTorch进行简单操作

  • 数据集加载和预处理
import torch
from torchvision import datasets, transforms

transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))
])

train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
  • 定义神经网络模型
import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(28*28, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = x.view(-1, 28*28)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)
  • 训练模型
import torch.optim as optim

model = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

for epoch in range(10):
    for data, target in train_loader:
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()

0