温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Python3 面向对象

发布时间:2020-06-14 11:06:42 来源:网络 阅读:401 作者:yhyang 栏目:编程语言

Python3 面向对象

python是一门面向对象语言,在python中有一句话:一切都是对象


面向对象简介

  • 类(Class): 用来描述具有相同的属性和方法的对象的集合。它定义了该集合中每个对象所共有的属性和方法。对象是类的实例。
  • 类变量:类变量在整个实例化的对象中是公用的。类变量定义在类中且在函数体之外。类变量通常不作为实例变量使用。
    • 数据成员:类变量或者实例变量用于处理类及其实例对象的相关的数据。
    • 方法重写:如果从父类继承的方法不能满足子类的需求,可以对其进行改写,这个过程叫方法的覆盖(override),也称为方法的重写。
    • 实例变量:定义在方法中的变量,只作用于当前实例的类。
    • 继承:即一个派生类(derived class)继承基类(base class)的字段和方法。继承也允许把一个派生类的对象作为一个基类对象对待。例如,有这样一个设计:一个Dog类型的对象派生自Animal类,这是模拟"是一个(is-a)"关系(例图,Dog是一个Animal)。
    • 实例化:创建一个类的实例,类的具体对象。
    • 方法:类中定义的函数。
    • 对象:通过类定义的数据结构实例。对象包括两个数据成员(类变量和实例变量)和方法。

      类的定义

      语法格式如下:


class ClassName:
    <statement-1>
    .
    .
    .
    <statement-N>

类实例化后,可以使用其属性;实际上,创建一个类之后,可以通过类名访问其属性。

类对象

类对象支持两种操作:属性引用和实例化。
属性引用语法:obj.name
对象创建后,类命名空间中所有的命名都是有效属性名

#!/usr/bin/python3
class People:
    """一个人类"""
    def __init__(self, name, age):    # 类的初始化方法,实例化的时候首先调用的方法,前后双下划线的方法都是特殊方法
        self.name = name              # 类的属性,也是特点、特征
        self.age = age

    def walk(self):                  # 普能方法
        """人类会走路"""
        print(f'{self.name} is walking')
# 实例化
p = People('yhyang', 18)
# 访问类的属性和方法
print(f'我的名字是:{p.name},我今年{p.age}岁')
p.walk()
输出:
我的名字是:yhyang,我今年18岁
yhyang is walking

注:上例中,init() 是类的初始化方法,用于初始化类中的属性和方法。

  • self代表类的实例,而非类
  • 类的方法与普通的函数只有一个特别的区别——它们必须有一个额外的第一个参数名称, 按照惯例它的名称是 self。
  • self 代表的是类的实例,代表当前对象的地址,而 self.class 则指向类。

    类的方法

    类地内部,使用 def 关键字来定义一个方法,与一般函数定义不同,类方法必须包含参数 self, 且为第一个参数,self 代表的是类的实例。
    示例代码:

#!/usr/bin/python3
class People:
    """一个人类"""
    def __init__(self, name, age):    # 类的初始化方法,实例化的时候首先调用的方法,前后双下划线的方法都是特殊方法
        self.name = name              # 类的属性,也是特点、特征
        self.age = age

    def walk(self):                  # 普能方法
        """人类会走路"""
        print(f'{self.name} is walking')
# 实例化
p = People('yhyang', 18)
# 访问类的方法
p.walk()
输出:
yhyang is walking

类中的变量

  • 私有变量:__name,不能被继承
  • 内部变量:_开头
  • 通过方法修改私有数据,对数据进行保护
    示例代码:
#!/usr/bin/python3
class Car:
    name = 'xxx'                                      # 类的属性
    def __init__(self, brand, price, wheels, power):
        self._brand = brand
        self.price = price
        self.wheels = wheels
        self.power = power
        self.__speed = 0

    def run(self, action):
        print(f'{self.brand} is running')
        if action == '1':
            self.__speed += 1 * 10                          # 修改私有变量
            print('当前速度是:{} km/h'.format(self.__speed))

    def start(self):
        print(f'{self.brand} is on')

    @property
    def speed(self):                                       # 只读,getter方法
        return self.__speed

    @property
    def brand(self):
        return self._brand

    @brand.setter                                          # 添加setter方法,可以被赋值
    def brand(self, brand):
        if not isinstance(brand, str):
            raise TypeError('牌子是字符串类型')            # raise 抛出异常
        self._brand = brand                                # 可以对属性操作,提前判断

    @property                                              # 把下边的函数变成了属性,可以直接用 实例名.info 这样调用
    def info(self):
        return f'{self.brand}: {self.price}'

# 实例化
auto = Car('auto', 30000, 4, 'oil')
auto.run('1')                                           # 调用run()方法,修改私有变量
auto.info                                                 # 以访问属性的方式访问info()方法
auto.brand = 'audiA8'    # 此处的brand不是属性,而是下边的@brand.setter处定义的brand方法
auto.brand
tesla = Car('Tesla', 100000, 4, 'electric')
tesla.run('1')
tesla.price = 999999        # 此处是类对象的属性
tesla.price
tesla.name
Car.name
auto.country = 'China'  # 在类的对象中动态的新声明一个属性,原类之中不存在
auto.country

输出:
auto is running
当前速度是:10 km/h
'auto: 30000'
'audiA8'
Tesla is running
当前速度是:10 km/h
999999
'xxx'
'xxx'
'China'

特殊方法

  • init: 把各种属性都绑定到self
  • slots:限制实例的动态属性,减少内存消耗,类型为tuple
  • str:对象的说明文字
  • eq: 比较对象是否相等
  • classmethod 与 staticmethod ;classmethod 会把类本身作为第一个参数传入
    示例代码1:

    #!/usr/bin/python3
    class Computer:
    __slots__ =('__name', 'mem', 'cpu')  # 为节省资源,不允许实例对象随意添加属性
    def __init__(self, name, mem, cpu):
        self.__name = name
        self.mem = mem
        self.cpu = cpu
    
    def play(self, game='qq games'):
        print('play',game)
    # 实例化
    pc2 = Computer('admin', '8G', '8核')
    pc2.mem
    pc2.ssd = 'ssd'  # 此处会报错,类中用了__slots__所以不能随意添加
    输出:
    '8G'
    AttributeError: 'Computer' object has no attribute 'ssd'

    示例代码2:

    #!/usr/bin/python3
    class Computer:
    __slots__ =('_name', 'mem', 'cpu')  # 为节省资源,不允许实例对象随意添加属性
    def __init__(self, name, mem, cpu):
        self._name = name
        self.mem = mem
        self.cpu = cpu
    
    def play(self, game='qq games'):
        print('play',game)
    
    def __str__(self):                 # 当print(对象)时,自动调用此方法
        return f'{self._name}:{self.mem}-{self.cpu}'
    # 实例化
    pc3 = Computer('admin', '8G','8核')
    print(pc3)                       # 直接打印对象
    输出:
    admin:8G-8核

    示例代码3:

    #!/usr/bin/python3
    class Computer:
    __slots__ =('_name', 'mem', 'cpu')  # 为节省资源,不允许实例对象随意添加属性
    def __init__(self, name, mem, cpu):
        self._name = name
        self.mem = mem
        self.cpu = cpu
    
    def play(self, game='qq games'):
        print('play',game)
    
    def __str__(self):                 # 当print(对象)时,自动调用此方法
        return f'{self._name}:{self.mem}-{self.cpu}'
    
    def __eq__(self,other):              # 对象A == 对象B 时调用
        return self.cpu == other.cpu
    # 实例化
    pc2 = Computer('admin','8G','8核')
    pc3 = Computer('admin','4G','8核')
    pc2 == pc3                               # 调用__eq__方法,认为cpu相等即为两个对象相等
    输出:
    True

    示例代码4:

    #!/usr/bin/python3
    class Computer:
    __slots__ =('_name', 'mem', 'cpu')  # 为节省资源,不允许实例对象随意添加属性
    def __init__(self, name, mem, cpu):
        self._name = name
        self.mem = mem
        self.cpu = cpu
    
    def play(self, game='qq games'):
        print('play',game)
    
    def __str__(self):                 # 当print(对象)时,自动调用此方法
        return f'{self._name}:{self.mem}-{self.cpu}'
    
    def __eq__(self,other):              # 对象A == 对象B 时调用
        return self.cpu == other.cpu
    
    @classmethod
    def new_pc(cls, info):            #cls 相当于类本身,通过 类名.new_pc(‘参数’)来直接生成实例,而不调用__init__
        "从字符串直接产生新的实例"
        name, mem, cpu = info.split('-')  # 传参时用-连接三个参数
        return cls(name, mem, cpu)
    # 使用classmethod建立新对象
    pc666 = Computer.new_pc('yhyang-16G-8eeeee核')
    print(pc666)
    输出:
    yhyang:16G-8核

    示例代码5:

    #!/usr/bin/python3
    class Computer:
    __slots__ =('_name', 'mem', 'cpu')  # 为节省资源,不允许实例对象随意添加属性
    def __init__(self, name, mem, cpu):
        self._name = name
        self.mem = mem
        self.cpu = cpu
    
    def play(self, game='qq games'):
        print('play',game)
    
    def __str__(self):                 # 当print(对象)时,自动调用此方法
        return f'{self._name}:{self.mem}-{self.cpu}'
    
    def __eq__(self,other):              # 对象A == 对象B 时调用
        return self.cpu == other.cpu
    
    @classmethod
    def new_pc(cls, info):            #cls 相当于类本身通过 类名.new_pc(‘参数’)来直接生成实例,而不调用__init__
        "从字符串直接产生新的实例"
        name, mem, cpu = info.split('-')  # 传参时用-连接三个参数
        return cls(name, mem, cpu)
    
    @staticmethod   # 不需要生成类的实例,就可以使用的方法 ,直接用 类名.calc来调用此方法
    def calc(a,b,oper): # 不用第一个参数
        "根据操作符+-*/来计算a 和b的结果"
        if oper == '+':
            return a + b
    Computer.calc(2,5,'+')
    输出:
    7

    面向对象三大特征

  • 封装
  • 继承
  • 多态

    继承(多继承暂时不说)

    python支持类的继承,如下格式:

    class DerivedClassName(BaseClassName1):
    <statement-1>
    .
    .
    .
    <statement-N>
    

    要注意圆括号中基类的顺序,若是基类中有相同的方法名,而在子类使用时未指定,python从左至右搜索 即方法在子类中未找到时,从左到右查找基类中是否包含方法。

BaseClassName(示例中的基类名)必须与派生类定义在一个作用域内。除了类,还可以用表达式,基类定义在另一个模块中时这一点非常有用:
class DerivedClassName(modname.BaseClassName):
示例代码:


#!/usr/bin/python3

#类定义
class people:
    #定义基本属性
    name = ''
    age = 0
    #定义私有属性,私有属性在类外部无法直接进行访问
    __weight = 0
    #定义构造方法
    def __init__(self,n,a,w):
        self.name = n
        self.age = a
        self.__weight = w
    def speak(self):
        print("%s 说: 我 %d 岁。" %(self.name,self.age))

#单继承示例
class student(people):
    grade = ''
    def __init__(self,n,a,w,g):
        #调用父类的构函
        people.__init__(self,n,a,w)
        self.grade = g
    #覆写父类的方法
    def speak(self):
        print("%s 说: 我 %d 岁了,我在读 %d 年级"%(self.name,self.age,self.grade))

s = student('ken',10,60,3)
s.speak()
输出:
ken 说: 我 10 岁了,我在读 3 年级

方法重写(多态)

  • 如果你的父类方法的功能不能满足你的需求,你可以在子类重写你父类的方法
  • super() 函数是用于调用父类(超类)的一个方法。
    示例代码:

#!/usr/bin/python3

class Parent:        # 定义父类
   def FatherMethod(self):
      print ('调用父类方法')

class Child(Parent): # 定义子类
   def FatherMethod(self):
      print ('调用子类方法')

c = Child()          # 子类实例
c.FatherMethod()         # 子类调用重写方法
super(Child,c).FatherMethod() #用子类对象调用父类已被覆盖的方法
输出:
调用子类方法
调用父类方法

元编程

  • 类的类型是type,type类型是元类型metaclass,对象的类型是类类型
  • 顺序为 type---> class -----> object
  • 类A继承于type,通过type的new方法返回一个对象,可以认为是类A的对象,所以
  • 类实例化的方式为:a = A(),其实a是A调用type中new方法的返回值
    示例代码1:
#!/usr/bin/python3
# 运行时动态创建类和函数
# metaclass -> class ->obj
# __new__
class Game:
    pass
Game.__class__
输出:
type
type(Game)
输出:
type

示例代码2:

#!/usr/bin/python3
# type 是一个metaclass
# 通过type创建一个新的metaclass
class Yuhy(type):
    pass
class Yhy(metaclass=Yuhy):
    pass
print(type(Yuhy))       # 查看Yuhy类的类型
print(type(Yhy))         # 查看Yhy类的类型
输出:
<class 'type'>
<class '__main__.Yuhy'>

isinstance(Yhy,Yuhy)      # Yhy与Yuhy是否是同样的类型
输出:
True

Yhy.__new__?查看此方法
Signature: Yhy.__new__(*args, **kwargs)
Docstring: Create and return a new object. See help(type) for accurate signature.
Type: builtin_function_or_method
help(type)
示例代码:

class Yuhy(type):
    def __new__(cls, name, bases, my_dict):   # classmethod
        print(f'{name} 使用__new__创建')
        yhy = super().__new__(cls, name, bases, my_dict)
        return yhy
class Ks(metaclass=Yuhy):
    pass
输出:
Ks 使用__new__创建
a = Ks()
print(a)
输出:
<__main__.Ks object at 0x0000024AF06E9A20>

反射能用来干什么

反射也叫内省,其实就是让对象自己告诉我们他有啥,能干啥
有三个方法

  • hasattr(obj,attr)
  • setattr(obj,attr,val )
  • getattr(obj,attr)
    示例代码1:
#!/usr/bin/python3
# hasattr(obj, attr) 检查obj是否有一个名为attr的值的属性,返回一个bool
# getattr(obj,attr) 检查obj中是否有attr属性或方法,并将其返回
# setattr(obj,attr,value)  向对象obj中添加一个属性,值为value
s = 'yhyang'                   # s是一个字符串对象
s.upper()
输出:
'YHYANG'

isinstance(s, str)
输出:
True
hasattr(s,'upper')    # 查看s当中是否有一个叫upper的方法
输出:
True

示例代码2:

#!/usr/bin/python3
class People:
    def eat(self):
        print('eate')
    def drink(self):
        print('drink')
p = People()

p.eat()
hasattr(p,'eat')  # 找这个对象p中有没有eat这个方法
getattr(p,'eat') # 在p中找到eat方法 并返回
aa = getattr(p,'eat')
aa()
setattr(p, 'sleep', 'sleep1234')     # 添加一个新的属性,值为sleep1234
p.sleep
输出:
eate
True
<bound method People.eat of <__main__.People object at 0x0000024AF06F7668>>
eate
'sleep1234'

示例代码3:汽车工厂

#!/usr/bin/python3
# 汽车类
class Car:
    def info(self):
        print('Car 父类 ')

class Audi(Car):
    def info(self):
        print('Audi 汽车')

class Tesla(Car):
    def info(self):
        print('Tesla 汽车')

# 工厂类
class Factory:
    def create(self):
        print('创建汽车,工厂基类')

class AudiFactory(Factory):
    def creat(self):
        print('创造Audi汽车')
        return Audi()

class TeslaFactory(Factory):
    def creat(self):
        print('创造Tesla汽车')
        return Tesla()

# 生产汽车
audi_F = AudiFactory()
audi = audi_F.creat()
audi.info()

#另一种写法
AudiFactory().creat().info()
TeslaFactory().creat().info()
输出:
创造Audi汽车
Audi 汽车
创造Audi汽车
Audi 汽车
创造Tesla汽车
Tesla 汽车
向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI