在 CentOS 上配置 Python 数据分析环境的实用步骤
一 基础环境准备
sudo yum update -ysudo yum install -y epel-releasesudo yum install -y python3 python3-pippython3 -m pip install --upgrade pipsudo yum groupinstall -y "Development Tools"sudo yum install -y gcc gcc-c++ make cmake3 blas-devel lapack-devel openblas-devel二 方案一 使用系统 Python 与虚拟环境(轻量、贴近系统)
python3 -m venv ~/venvs/data310source ~/venvs/data310/bin/activatepip install --upgrade pippip install numpy pandas matplotlib seaborn scipy scikit-learn jupyter--ip 与 --no-browser 使用)。
jupyter notebook --ip=0.0.0.0 --no-browser --allow-rootdeactivate三 方案二 使用 Anaconda(包与环境管理一体化,适合数据科学)
wget https://repo.anaconda.com/archive/Anaconda3-2023.07-2-Linux-x86_64.shbash Anaconda3-2023.07-2-Linux-x86_64.shsource ~/.bashrc(或新开终端)以加载 conda 环境。conda create -n ds310 python=3.10 -yconda activate ds310conda install -c conda-forge numpy pandas matplotlib seaborn scipy scikit-learn jupyterjupyter notebook --ip=0.0.0.0 --no-browser --allow-root四 常用扩展与数据库对接(按需)
sudo yum install -y mysql-community-serversudo systemctl start mysqldsudo systemctl enable mysqldgrep 'temporary password' /var/log/mysqld.logpip install pymysqlimport pandas as pd, pymysqlconn = pymysql.connect(host='localhost', user='root', password='your_password', db='your_db')df = pd.read_sql('SELECT * FROM your_table', conn); conn.close()pip install statsmodels plotly bokeh xgboost五 常见问题与优化建议
pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple numpy pandas matplotlib seaborn scipy scikit-learn