Ubuntu 下 Python 机器学习框架推荐与选型
一 核心框架与适用场景
二 安装与环境管理
sudo apt update && sudo apt install python3 python3-pippython3 -m venv venv && source venv/bin/activateconda create -n ml python=3.10 并 conda activate mlpip install numpy pandas scikit-learn tensorflow keras torch torchvision torchaudioconda install numpy pandas scikit-learn tensorflow keras pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch(按需选择 cudatoolkit 版本)三 快速上手示例
import numpy as np, pandas as pdfrom sklearn.model_selection import train_test_splitfrom sklearn.linear_model import LinearRegressionfrom sklearn.metrics import mean_squared_errorX = np.random.rand(100, 1); y = 3 * X.squeeze() + 2 + 0.1 * np.random.randn(100)X_tr, X_te, y_tr, y_te = train_test_split(X, y, test_size=0.2, random_state=42)model = LinearRegression().fit(X_tr, y_tr)pred = model.predict(X_te); print("MSE:", mean_squared_error(y_te, pred))import torch, torch.nn as nnx = torch.linspace(0, 4*torch.pi, 1000).unsqueeze(1); y = torch.sin(x) + 0.2*torch.randn_like(x)model = nn.Sequential(nn.Linear(1, 64), nn.ReLU(), nn.Linear(64, 1))opt = torch.optim.Adam(model.parameters(), lr=1e-3); loss_fn = nn.MSELoss()for epoch in range(500): opt.zero_grad(); loss = loss_fn(model(x), y); loss.backward(); opt.step()print("Final loss:", loss.item())四 选型建议