在Linux中,C++可以通过多种方式实现进程间通信(IPC)。以下是一些常用的IPC机制:
管道(Pipes):
信号(Signals):
消息队列(Message Queues):
共享内存(Shared Memory):
信号量(Semaphores):
套接字(Sockets):
下面是使用这些IPC机制的一些基本示例:
#include <unistd.h>
#include <iostream>
int main() {
int pipefd[2];
char buffer[10];
// 创建匿名管道
if (pipe(pipefd) == -1) {
perror("pipe");
return EXIT_FAILURE;
}
// 父进程关闭写端,子进程关闭读端
if (fork() == 0) {
close(pipefd[1]); // 子进程关闭写端
read(pipefd[0], buffer, sizeof(buffer)); // 子进程从管道读取数据
std::cout << "Child received: " << buffer << std::endl;
close(pipefd[0]);
} else {
close(pipefd[0]); // 父进程关闭读端
const char* message = "Hello from parent!";
write(pipefd[1], message, strlen(message) + 1); // 父进程向管道写入数据
close(pipefd[1]);
}
return EXIT_SUCCESS;
}
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <iostream>
int main() {
const char* fifo = "/tmp/myfifo";
mkfifo(fifo, 0666);
int fd = open(fifo, O_RDWR);
if (fd == -1) {
perror("open");
return EXIT_FAILURE;
}
const char* message = "Hello from FIFO!";
write(fd, message, strlen(message) + 1);
char buffer[10];
read(fd, buffer, sizeof(buffer));
std::cout << "Received: " << buffer << std::endl;
close(fd);
unlink(fifo);
return EXIT_SUCCESS;
}
#include <sys/ipc.h>
#include <sys/msg.h>
#include <iostream>
#include <cstring>
struct msg_buffer {
long msg_type;
char msg_text[100];
};
int main() {
key_t key = ftok("msgqueue.c", 65);
int msgid = msgget(key, 0666 | IPC_CREAT);
msg_buffer buffer;
buffer.msg_type = 1;
strcpy(buffer.msg_text, "Hello from message queue!");
msgsnd(msgid, &buffer, sizeof(buffer.msg_text), 0);
msgrcv(msgid, &buffer, sizeof(buffer.msg_text), 1, 0);
std::cout << "Received: " << buffer.msg_text << std::endl;
msgctl(msgid, IPC_RMID, NULL);
return EXIT_SUCCESS;
}
#include <sys/ipc.h>
#include <sys/shm.h>
#include <iostream>
#include <cstring>
int main() {
key_t key = ftok("shmfile.c", 65);
int shmid = shmget(key, 1024, 0666 | IPC_CREAT);
char* str = (char*) shmat(shmid, (void*)0, 0);
if (str == (char*)(-1)) {
perror("shmat");
return EXIT_FAILURE;
}
strcpy(str, "Hello from shared memory!");
std::cout << "String in memory: " << str << std::endl;
shmdt(str);
shmctl(shmid, IPC_RMID, NULL);
return EXIT_SUCCESS;
}
#include <sys/ipc.h>
#include <sys/sem.h>
#include <iostream>
union semun {
int val;
struct semid_ds *buf;
unsigned short *array;
};
int main() {
key_t key = ftok("semaphore.c", 65);
int semid = semget(key, 1, 0666 | IPC_CREAT);
union semun arg;
arg.val = 1; // Initialize semaphore value to 1
semctl(semid, 0, SETVAL, arg);
// P operation (decrement semaphore)
struct sembuf sb = {0, -1, SEM_UNDO};
semop(semid, &sb, 1);
// V operation (increment semaphore)
sb.sem_op = 1;
semop(semid, &sb, 1);
semctl(semid, 0, IPC_RMID, arg);
return EXIT_SUCCESS;
}
// 这里省略了套接字的实现,因为它们通常用于网络通信,而不是简单的进程间通信。
// 但是,你可以使用Unix域套接字(AF_UNIX)在同一台机器上的进程间进行通信。
在使用这些IPC机制时,需要注意同步和互斥问题,以避免竞态条件和数据不一致。此外,还需要处理可能出现的错误情况。在实际应用中,可能需要结合多种IPC机制来满足不同的需求。