温馨提示×

HDFS与YARN在CentOS中如何协同工作

小樊
32
2025-12-02 01:42:45
栏目: 智能运维

HDFS(Hadoop Distributed File System)和YARN(Yet Another Resource Negotiator)是Apache Hadoop生态系统中的两个核心组件,它们在CentOS系统中协同工作,共同提供大数据处理能力。以下是HDFS和YARN在CentOS中协同工作的基本步骤:

1. 安装Hadoop

首先,需要在CentOS系统上安装Hadoop。可以从Apache Hadoop官方网站下载最新版本的Hadoop,并按照官方文档进行安装和配置。

安装步骤概述:

  • 下载Hadoop压缩包并解压。
  • 配置Hadoop环境变量。
  • 编辑core-site.xmlhdfs-site.xmlyarn-site.xml等配置文件。
  • 启动Hadoop集群。

2. 配置HDFS

HDFS负责存储数据,配置文件主要包括core-site.xmlhdfs-site.xml

core-site.xml示例配置:

<configuration>
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://namenode:9000</value>
    </property>
</configuration>

hdfs-site.xml示例配置:

<configuration>
    <property>
        <name>dfs.replication</name>
        <value>3</value>
    </property>
    <property>
        <name>dfs.namenode.name.dir</name>
        <value>/path/to/namenode/data</value>
    </property>
    <property>
        <name>dfs.datanode.data.dir</name>
        <value>/path/to/datanode/data</value>
    </property>
</configuration>

3. 配置YARN

YARN负责资源管理和任务调度,配置文件主要包括yarn-site.xml

yarn-site.xml示例配置:

<configuration>
    <property>
        <name>yarn.resourcemanager.hostname</name>
        <value>resourcemanager</value>
    </property>
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
    <property>
        <name>yarn.nodemanager.resource.memory-mb</name>
        <value>4096</value>
    </property>
    <property>
        <name>yarn.nodemanager.resource.cpu-vcores</name>
        <value>4</value>
    </property>
</configuration>

4. 启动Hadoop集群

在配置完成后,启动Hadoop集群。

启动顺序:

  1. 启动NameNode:
    hadoop-daemon.sh start namenode
    
  2. 启动SecondaryNameNode(可选):
    hadoop-daemon.sh start secondarynamenode
    
  3. 启动DataNode:
    hadoop-daemon.sh start datanode
    
  4. 启动ResourceManager:
    yarn-daemon.sh start resourcemanager
    
  5. 启动NodeManager:
    yarn-daemon.sh start nodemanager
    

5. 验证集群状态

使用Hadoop提供的命令行工具验证集群状态。

检查HDFS状态:

hdfs dfsadmin -report

检查YARN状态:

yarn node -list

6. 运行MapReduce作业

配置好HDFS和YARN后,可以运行MapReduce作业来处理数据。

示例MapReduce作业:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class WordCount {
    public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();

        public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
            String[] words = value.toString().split("\\s+");
            for (String w : words) {
                word.set(w);
                context.write(word, one);
            }
        }
    }

    public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
        private IntWritable result = new IntWritable();

        public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
            int sum = 0;
            for (IntWritable val : values) {
                sum += val.get();
            }
            result.set(sum);
            context.write(key, result);
        }
    }

    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, "word count");
        job.setJarByClass(WordCount.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

编译并打包上述代码,然后使用以下命令运行MapReduce作业:

hadoop jar WordCount.jar WordCount /input /output

总结

HDFS和YARN在CentOS中协同工作,HDFS负责数据存储,YARN负责资源管理和任务调度。通过正确配置和启动这两个组件,可以实现高效的大数据处理能力。

0