在Linux中,C++可以通过多种方式实现进程间通信(IPC)。以下是一些常用的IPC机制:
管道(Pipes):
信号(Signals):
消息队列(Message Queues):
共享内存(Shared Memory):
信号量(Semaphores):
套接字(Sockets):
下面是一些简单的示例代码,展示了如何在C++中使用这些IPC机制:
#include <iostream>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
int main() {
int pipefd[2];
pid_t pid;
char buffer[10];
// 创建管道
if (pipe(pipefd) == -1) {
perror("pipe");
exit(EXIT_FAILURE);
}
// 创建子进程
pid = fork();
if (pid == -1) {
perror("fork");
exit(EXIT_FAILURE);
}
if (pid == 0) { // 子进程
close(pipefd[1]); // 关闭写端
read(pipefd[0], buffer, sizeof(buffer)); // 读取消息
std::cout << "Child received: " << buffer << std::endl;
close(pipefd[0]);
} else { // 父进程
close(pipefd[0]); // 关闭读端
const char* message = "Hello from parent!";
write(pipefd[1], message, strlen(message) + 1); // 发送消息
close(pipefd[1]);
wait(NULL); // 等待子进程结束
}
return 0;
}
#include <iostream>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
int main() {
const char* fifo = "/tmp/myfifo";
mkfifo(fifo, 0666);
int fd = open(fifo, O_WRONLY);
if (fd == -1) {
perror("open");
return 1;
}
const char* message = "Hello from FIFO!";
write(fd, message, strlen(message) + 1);
close(fd);
unlink(fifo); // 删除命名管道
return 0;
}
#include <iostream>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <unistd.h>
int main() {
key_t key = ftok("shmfile", 65);
int shmid = shmget(key, 1024, 0666|IPC_CREAT);
char *str = (char*) shmat(shmid, (void*)0, 0);
strcpy(str, "Hello world!");
std::cout << "String in shared memory: " << str << std::endl;
shmdt(str);
shmctl(shmid, IPC_RMID, NULL);
return 0;
}
#include <iostream>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <unistd.h>
union semun {
int val;
struct semid_ds *buf;
unsigned short *array;
};
int main() {
key_t key = ftok("semfile", 65);
int semid = semget(key, 1, 0666|IPC_CREAT);
union semun arg;
arg.val = 1; // 初始化信号量为1
semctl(semid, 0, SETVAL, arg);
// 使用信号量进行同步操作
// ...
semctl(semid, 0, IPC_RMID); // 删除信号量集
return 0;
}
// 服务器端
#include <iostream>
#include <sys/socket.h>
#include <netinet/in.h>
#include <unistd.h>
int main() {
int server_fd, new_socket;
struct sockaddr_in address;
int opt = 1;
int addrlen = sizeof(address);
// 创建套接字文件描述符
if ((server_fd = socket(AF_INET, SOCK_STREAM, 0)) == 0) {
perror("socket failed");
exit(EXIT_FAILURE);
}
// 绑定套接字到端口
address.sin_family = AF_INET;
address.sin_addr.s_addr = INADDR_ANY;
address.sin_port = htons(8080);
if (setsockopt(server_fd, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT, &opt, sizeof(opt))) {
perror("setsockopt");
exit(EXIT_FAILURE);
}
if (bind(server_fd, (struct sockaddr *)&address, sizeof(address)) < 0) {
perror("bind failed");
exit(EXIT_FAILURE);
}
if (listen(server_fd, 3) < 0) {
perror("listen");
exit(EXIT_FAILURE);
}
// 接受连接
if ((new_socket = accept(server_fd, (struct sockaddr *)&address, (socklen_t*)&addrlen)) < 0) {
perror("accept");
exit(EXIT_FAILURE);
}
// 读取数据
char buffer[1024] = {0};
read(new_socket, buffer, 1024);
std::cout << "Message from client: " << buffer << std::endl;
// 发送响应
send(new_socket, "Hello from server", 17, 0);
std::cout << "Hello message sent\n";
close(new_socket);
close(server_fd);
return 0;
}
// 客户端
#include <iostream>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>
int main() {
int sock = 0;
struct sockaddr_in serv_addr;
if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
std::cout << "
Socket creation error
";
return -1;
}
serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(8080);
// 将IPv4地址从文本转换为二进制形式
if(inet_pton(AF_INET, "127.0.0.1", &serv_addr.sin_addr) <= 0) {
std::cout << "
Invalid address/ Address not supported
";
return -1;
}
if (connect(sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) < 0) {
std::cout << "
Connection Failed
";
return -1;
}
send(sock, "Hello from client", 17, 0);
std::cout << "Hello message sent\n";
char buffer[1024] = {0};
read(sock, buffer, 1024);
std::cout << "Message from server: " << buffer << std::endl;
close(sock);
return 0;
}
在使用这些IPC机制时,需要注意同步和互斥的问题,以避免竞态条件和数据不一致。此外,还需要考虑错误处理和资源的清理工作。