CentOS 上 Python 机器学习入门路线图
一 环境准备与 Python 安装
二 创建隔离环境与管理依赖
三 机器学习快速上手 KMeans 聚类实战
import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import make_blobs from sklearn.metrics import adjusted_rand_score, silhouette_score
X, y_true = make_blobs(n_samples=300, centers=3, cluster_std=1.5, random_state=42, n_features=2)
kmeans = KMeans(n_clusters=3, init=‘k-means++’, n_init=10, max_iter=300, random_state=42) kmeans.fit(X) y_pred = kmeans.labels_ centers = kmeans.cluster_centers_
ari = adjusted_rand_score(y_true, y_pred) sil = silhouette_score(X, y_pred) print(f"ARI: {ari:.4f}, Silhouette: {sil:.4f}")
plt.figure(figsize=(12,5)) plt.subplot(1,2,1); plt.scatter(X[:,0], X[:,1], c=y_true, cmap=‘viridis’, s=50); plt.title(“True”) plt.subplot(1,2,2); plt.scatter(X[:,0], X[:,1], c=y_pred, cmap=‘viridis’, s=50) plt.scatter(centers[:,0], centers[:,1], c=‘red’, s=200, marker=‘X’); plt.title(“KMeans”) plt.tight_layout(); plt.show()
inertias = [KMeans(n_clusters=k, random_state=42, n_init=10).fit(X).inertia_ for k in range(1,11)] plt.figure(); plt.plot(range(1,11), inertias, ‘bo-’); plt.xlabel(‘K’); plt.ylabel(‘WCSS’); plt.title(‘Elbow’)
四 深度学习框架选择与安装 PyTorch 示例
五 常用库与下一步学习路径