Linux上解决PyTorch兼容性问题的实用步骤
一、先明确兼容性的四个关键点
二、标准化安装与验证流程
conda create -n torch_env python=3.10 -y && conda activate torch_envpython3 -m venv torch_env && source torch_env/bin/activateubuntu-drivers devicessudo apt install nvidia-driver-535 -y && sudo rebootnvidia-smi(右上显示Supported/Runtime CUDA)conda install pytorch torchvision torchaudio cpuonly -c pytorchconda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidiapip install torch torchvision torchaudiopip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121python - <<'PY' import torch, sys print("torch:", torch.__version__, "python:", sys.version.split()[0]) print("cuda available:", torch.cuda.is_available()) if torch.cuda.is_available(): print("device count:", torch.cuda.device_count()) print("current device:", torch.cuda.current_device()) print("device name:", torch.cuda.get_device_name()) PY-i https://pypi.tuna.tsinghua.edu.cn/simple三、常见兼容性问题与快速修复
ERROR: torchvision X.Y.Z has requirement torch==A.B.Cpip install torch==1.13.0+cu117 torchvision==0.15.2+cu117 --extra-index-url https://download.pytorch.org/whl/cu117Solving environment: failed... 或历史版本要求低Pythonconda create -n torch120 python=3.7 -y && conda activate torch120conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorchtorch.cuda.is_available() 为 False、CUDA初始化失败ubuntu-drivers autoinstall 或指定版本),或安装与驱动匹配的PyTorch CUDA版本(参考nvidia-smi右上CUDA)。sudo pip污染系统包。四、版本选择建议与对应关系
torch==1.13.x ↔ torchvision==0.14.x(CUDA 11.7)torch==1.13.0 ↔ torchvision==0.15.2(CUDA 11.7)五、诊断清单与最小化复现
python --version、pip show torch、conda list | grep torchnvidia-smi(驱动版本、Supported/Runtime CUDA)、nvcc --version(Toolkit版本)python - <<'PY' import torch print("torch:", torch.__version__, "cuda:", torch.version.cuda) print("cuda available:", torch.cuda.is_available()) PY