在CentOS上解决PyTorch兼容性问题,需重点关注系统版本、CUDA/cuDNN版本匹配及依赖安装,具体步骤如下:
sudo yum update -y
sudo yum install -y gcc openssl-devel bzip2-devel libffi-devel cmake3 git wget
wget https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-repo-rhel7-<版本>.rpm
sudo rpm -i cuda-repo-rhel7-<版本>.rpm
sudo yum clean all
sudo yum install -y cuda
tar -xzvf cudnn-<版本>-linux-x64-v<版本>.tgz
sudo cp cuda/include/cudnn*.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
source ~/.bashrc
pip install torch torchvision torchaudio
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu<对应CUDA版本>
```(如CUDA 11.3对应`cu113`)
*推荐使用conda管理虚拟环境,避免依赖冲突。*
import torch
print(torch.__version__)
print(torch.cuda.is_available()) # GPU版本需返回True
关键注意事项:
conda install指定版本。参考来源: