CentOS 中 PyTorch 依赖完整解决指南
一 环境准备与系统依赖
sudo yum update -ysudo yum groupinstall -y "Development Tools"sudo yum install -y cmake3 git wgetsudo yum install -y python3 python3-pip python3-devel二 GPU 支持与驱动配置
lspci | grep -i nvidia 查看显卡nvidia-smi 检查驱动与 CUDA Runtime 版本;若未安装驱动,先安装与显卡匹配的 NVIDIA 驱动。wget https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda_11.7.0_515.43.04_linux.runsudo sh cuda_11.7.0_515.43.04_linux.run~/.bashrc):
export PATH=/usr/local/cuda-11.7/bin:$PATHexport LD_LIBRARY_PATH=/usr/local/cuda-11.7/lib64:$LD_LIBRARY_PATHsource ~/.bashrcnvidia-smi 确认驱动与 CUDA 正常。三 安装 PyTorch 与常用依赖
python3 -m pip install --upgrade pippip3 install torch torchvision torchaudiopip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117conda install pytorch torchvision torchaudio cpuonly -c pytorchconda install pytorch torchvision torchaudio cudatoolkit=11.7 -c pytorchpip3 install numpy pandas matplotlib scipy scikit-learncudatoolkit 由 conda 管理 CUDA 运行时,减少与系统 CUDA 的冲突。四 验证安装与常见问题处理
import torchprint(torch.__version__)print(torch.cuda.is_available())(GPU 版本应返回 True)python -m pip install --upgrade pippip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple