在Linux中,有多种方法可以实现进程间通信(IPC)。以下是一些常用的IPC机制:
管道(Pipes):
信号(Signals):
消息队列(Message Queues):
共享内存(Shared Memory):
信号量(Semaphores):
套接字(Sockets):
下面是一些简单的示例代码,展示了如何在Linux中使用这些IPC机制:
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <iostream>
int main() {
int pipefd[2];
pid_t pid;
char buffer[256];
// 创建管道
if (pipe(pipefd) == -1) {
perror("pipe");
exit(EXIT_FAILURE);
}
// 创建子进程
pid = fork();
if (pid == -1) {
perror("fork");
exit(EXIT_FAILURE);
}
if (pid > 0) { // 父进程
close(pipefd[0]); // 关闭读端
const char* message = "Hello from parent!";
write(pipefd[1], message, strlen(message) + 1); // 写入数据
close(pipefd[1]); // 关闭写端
wait(NULL); // 等待子进程结束
} else { // 子进程
close(pipefd[1]); // 关闭写端
read(pipefd[0], buffer, sizeof(buffer)); // 读取数据
std::cout << "Child received: " << buffer << std::endl;
close(pipefd[0]); // 关闭读端
}
return 0;
}
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <iostream>
int main() {
const char* fifo = "/tmp/myfifo";
mkfifo(fifo, 0666);
int fd = open(fifo, O_RDWR);
if (fd == -1) {
perror("open");
exit(EXIT_FAILURE);
}
const char* message = "Hello from FIFO!";
write(fd, message, strlen(message) + 1);
char buffer[256];
read(fd, buffer, sizeof(buffer));
std::cout << "Received: " << buffer << std::endl;
close(fd);
unlink(fifo);
return 0;
}
#include <sys/ipc.h>
#include <sys/shm.h>
#include <iostream>
#include <cstring>
int main() {
key_t key = ftok("shmfile", 65);
int shmid = shmget(key, 1024, 0666|IPC_CREAT);
char *str = (char*) shmat(shmid, (void*)0, 0);
strcpy(str, "Hello shared memory!");
std::cout << "String in memory: " << str << std::endl;
shmdt(str);
shmctl(shmid, IPC_RMID, NULL);
return 0;
}
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <iostream>
union semun {
int val;
struct semid_ds *buf;
unsigned short *array;
};
int main() {
key_t key = ftok("semfile", 65);
int semid = semget(key, 1, 0666|IPC_CREAT);
union semun arg;
arg.val = 1; // 初始化信号量为1
semctl(semid, 0, SETVAL, arg);
// 使用信号量进行P操作(等待)
struct sembuf sb = {0, -1, SEM_UNDO};
semop(semid, &sb, 1);
std::cout << "Semaphore value after P operation: " << semctl(semid, 0, GETVAL, arg) << std::endl;
// 使用信号量进行V操作(释放)
sb.sem_op = 1;
semop(semid, &sb, 1);
semctl(semid, 0, IPC_RMID, arg);
return 0;
}
// 这是一个简单的TCP套接字示例,包括服务器和客户端代码。
// 服务器端
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <iostream>
int main() {
int server_fd, new_socket;
struct sockaddr_in address;
int opt = 1;
int addrlen = sizeof(address);
char buffer[1024] = {0};
// 创建套接字文件描述符
if ((server_fd = socket(AF_INET, SOCK_STREAM, 0)) == 0) {
perror("socket failed");
exit(EXIT_FAILURE);
}
// 强制绑定
if (setsockopt(server_fd, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT, &opt, sizeof(opt))) {
perror("setsockopt");
exit(EXIT_FAILURE);
}
address.sin_family = AF_INET;
address.sin_addr.s_addr = INADDR_ANY;
address.sin_port = htons(8080);
// 绑定套接字到地址
if (bind(server_fd, (struct sockaddr *)&address, sizeof(address)) < 0) {
perror("bind failed");
exit(EXIT_FAILURE);
}
// 监听连接
if (listen(server_fd, 3) < 0) {
perror("listen");
exit(EXIT_FAILURE);
}
// 接受连接
if ((new_socket = accept(server_fd, (struct sockaddr *)&address, (socklen_t*)&addrlen)) < 0) {
perror("accept");
exit(EXIT_FAILURE);
}
// 读取数据
read(new_socket, buffer, 1024);
std::cout << "Message from client: " << buffer << std::endl;
// 发送响应
send(new_socket, "Hello from server", 17, 0);
std::cout << "Hello message sent\n";
close(new_socket);
close(server_fd);
return 0;
}
// 客户端
#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <iostream>
int main() {
int sock = 0;
struct sockaddr_in serv_addr;
char *hello = "Hello from client";
char buffer[1024] = {0};
// 创建套接字文件描述符
if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
std::cout << "
Socket creation error
";
return -1;
}
serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(8080);
// 将IPv4地址从文本转换为二进制形式
if(inet_pton(AF_INET, "127.0.0.1", &serv_addr.sin_addr) <= 0) {
std::cout << "
Invalid address/ Address not supported
";
return -1;
}
// 连接到服务器
if (connect(sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) < 0) {
std::cout << "
Connection Failed
";
return -1;
}
// 发送数据
send(sock, hello, strlen(hello), 0);
std::cout << "Hello message sent\n";
// 读取响应
read(sock, buffer, 1024);
std::cout << "Message from server: " << buffer << std::endl;
close(sock);
return 0;
}
在使用这些IPC机制时,需要注意同步和互斥的问题,以避免竞态条件和数据不一致。此外,还需要考虑错误处理和资源清理,确保程序的健壮性。