温馨提示×

C++如何在Linux中实现进程间通信

小樊
54
2025-09-01 05:37:41
栏目: 编程语言

在Linux中,有多种方法可以实现进程间通信(IPC)。以下是一些常用的IPC机制:

  1. 管道(Pipes):

    • 匿名管道(Anonymous Pipes): 通常用于父子进程之间的通信。
    • 命名管道(Named Pipes, FIFOs): 允许不相关的进程之间进行通信。
  2. 信号(Signals):

    • 用于通知接收进程某个事件已经发生。
  3. 消息队列(Message Queues):

    • 允许进程发送和接收消息。
  4. 共享内存(Shared Memory):

    • 允许多个进程访问同一块物理内存。
  5. 信号量(Semaphores):

    • 用于进程同步,控制多个进程对共享资源的访问。
  6. 套接字(Sockets):

    • 可用于不同机器间的进程通信,也可以用于同一台机器上的进程通信。

下面是一些简单的示例代码,展示了如何在Linux中使用这些IPC机制:

匿名管道

#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <iostream>

int main() {
    int pipefd[2];
    pid_t pid;
    char buffer[256];

    // 创建管道
    if (pipe(pipefd) == -1) {
        perror("pipe");
        exit(EXIT_FAILURE);
    }

    // 创建子进程
    pid = fork();
    if (pid == -1) {
        perror("fork");
        exit(EXIT_FAILURE);
    }

    if (pid > 0) { // 父进程
        close(pipefd[0]); // 关闭读端
        const char* message = "Hello from parent!";
        write(pipefd[1], message, strlen(message) + 1); // 写入数据
        close(pipefd[1]); // 关闭写端
        wait(NULL); // 等待子进程结束
    } else { // 子进程
        close(pipefd[1]); // 关闭写端
        read(pipefd[0], buffer, sizeof(buffer)); // 读取数据
        std::cout << "Child received: " << buffer << std::endl;
        close(pipefd[0]); // 关闭读端
    }

    return 0;
}

命名管道(FIFO)

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <iostream>

int main() {
    const char* fifo = "/tmp/myfifo";
    mkfifo(fifo, 0666);

    int fd = open(fifo, O_RDWR);
    if (fd == -1) {
        perror("open");
        exit(EXIT_FAILURE);
    }

    const char* message = "Hello from FIFO!";
    write(fd, message, strlen(message) + 1);

    char buffer[256];
    read(fd, buffer, sizeof(buffer));
    std::cout << "Received: " << buffer << std::endl;

    close(fd);
    unlink(fifo);

    return 0;
}

共享内存

#include <sys/ipc.h>
#include <sys/shm.h>
#include <iostream>
#include <cstring>

int main() {
    key_t key = ftok("shmfile", 65);
    int shmid = shmget(key, 1024, 0666|IPC_CREAT);
    char *str = (char*) shmat(shmid, (void*)0, 0);

    strcpy(str, "Hello shared memory!");
    std::cout << "String in memory: " << str << std::endl;

    shmdt(str);
    shmctl(shmid, IPC_RMID, NULL);

    return 0;
}

信号量

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <iostream>

union semun {
    int val;
    struct semid_ds *buf;
    unsigned short *array;
};

int main() {
    key_t key = ftok("semfile", 65);
    int semid = semget(key, 1, 0666|IPC_CREAT);

    union semun arg;
    arg.val = 1; // 初始化信号量为1
    semctl(semid, 0, SETVAL, arg);

    // 使用信号量进行P操作(等待)
    struct sembuf sb = {0, -1, SEM_UNDO};
    semop(semid, &sb, 1);

    std::cout << "Semaphore value after P operation: " << semctl(semid, 0, GETVAL, arg) << std::endl;

    // 使用信号量进行V操作(释放)
    sb.sem_op = 1;
    semop(semid, &sb, 1);

    semctl(semid, 0, IPC_RMID, arg);

    return 0;
}

套接字

// 这是一个简单的TCP套接字示例,包括服务器和客户端代码。

// 服务器端
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <iostream>

int main() {
    int server_fd, new_socket;
    struct sockaddr_in address;
    int opt = 1;
    int addrlen = sizeof(address);
    char buffer[1024] = {0};

    // 创建套接字文件描述符
    if ((server_fd = socket(AF_INET, SOCK_STREAM, 0)) == 0) {
        perror("socket failed");
        exit(EXIT_FAILURE);
    }

    // 强制绑定
    if (setsockopt(server_fd, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT, &opt, sizeof(opt))) {
        perror("setsockopt");
        exit(EXIT_FAILURE);
    }

    address.sin_family = AF_INET;
    address.sin_addr.s_addr = INADDR_ANY;
    address.sin_port = htons(8080);

    // 绑定套接字到地址
    if (bind(server_fd, (struct sockaddr *)&address, sizeof(address)) < 0) {
        perror("bind failed");
        exit(EXIT_FAILURE);
    }

    // 监听连接
    if (listen(server_fd, 3) < 0) {
        perror("listen");
        exit(EXIT_FAILURE);
    }

    // 接受连接
    if ((new_socket = accept(server_fd, (struct sockaddr *)&address, (socklen_t*)&addrlen)) < 0) {
        perror("accept");
        exit(EXIT_FAILURE);
    }

    // 读取数据
    read(new_socket, buffer, 1024);
    std::cout << "Message from client: " << buffer << std::endl;

    // 发送响应
    send(new_socket, "Hello from server", 17, 0);
    std::cout << "Hello message sent\n";

    close(new_socket);
    close(server_fd);

    return 0;
}

// 客户端
#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <iostream>

int main() {
    int sock = 0;
    struct sockaddr_in serv_addr;
    char *hello = "Hello from client";
    char buffer[1024] = {0};

    // 创建套接字文件描述符
    if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
        std::cout << "
 Socket creation error 
";
        return -1;
    }

    serv_addr.sin_family = AF_INET;
    serv_addr.sin_port = htons(8080);

    // 将IPv4地址从文本转换为二进制形式
    if(inet_pton(AF_INET, "127.0.0.1", &serv_addr.sin_addr) <= 0) {
        std::cout << "
Invalid address/ Address not supported 
";
        return -1;
    }

    // 连接到服务器
    if (connect(sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) < 0) {
        std::cout << "
Connection Failed 
";
        return -1;
    }

    // 发送数据
    send(sock, hello, strlen(hello), 0);
    std::cout << "Hello message sent\n";

    // 读取响应
    read(sock, buffer, 1024);
    std::cout << "Message from server: " << buffer << std::endl;

    close(sock);

    return 0;
}

在使用这些IPC机制时,需要注意同步和互斥的问题,以避免竞态条件和数据不一致。此外,还需要考虑错误处理和资源清理,确保程序的健壮性。

0