在 CentOS 上部署 PyTorch 的标准流程
一 环境准备
sudo yum update -ysudo yum groupinstall -y "Development Tools" 与 sudo yum install -y python3 python3-pip python3-devel gitpython3 -m venv pytorch_env && source pytorch_env/bin/activateconda create -n pytorch_env python=3.8 与 conda activate pytorch_env二 安装 PyTorch
pip install torch torchvision torchaudiopip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117三 验证安装与环境变量
python - <<'PY' import torch print("torch:", torch.__version__) print("cuda available:", torch.cuda.is_available()) if torch.cuda.is_available(): print("device count:", torch.cuda.device_count()) print("current device:", torch.cuda.current_device()) PY~/.bashrc 中添加并生效:
echo 'export PATH=/usr/local/cuda/bin:$PATH' >> ~/.bashrcecho 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH' >> ~/.bashrcsource ~/.bashrc四 部署与运行应用
python app.py/etc/systemd/system/pytorch_app.service:[Unit]
Description=PyTorch Application Service
After=network.target
[Service]
User=your_username
Group=your_groupname
ExecStart=/path/to/pytorch_env/bin/python /path/to/your/app.py
Restart=always
[Install]
WantedBy=multi-user.target
sudo systemctl daemon-reload && sudo systemctl start pytorch_app && sudo systemctl enable pytorch_app五 常见问题与进阶
torch.cuda.is_available() 为 False。检查 nvidia-smi 与 nvcc --version 输出,确保 驱动 ≥ CUDA 运行时且版本匹配;必要时重装对应 CUDA/cuDNN。gcc ≥ 7.3.0、cmake ≥ 3.12.0;克隆 PyTorch 源码后执行 python3 setup.py install。特定版本(如 1.11.0)可能需要更高 GCC(≥ 7.5.0)。python3 -c "import torch;import torch_npu; a = torch.randn(3,4).npu(); print(a+a)"。