在CentOS中高效使用PyTorch进行科研,可从环境配置、性能优化、开发工具及部署等方面入手,具体如下:
环境配置
sudo yum update -y
sudo yum groupinstall -y "Development Tools"
sudo yum install -y python3 python3-pip cmake3 git wget
pip3 install torch torchvision torchaudio# 安装CUDA(以11.8为例)
wget https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-repo-rhel7-11.8.0-520.61.05-1.el7.x86_64.rpm
sudo rpm -i cuda-repo-rhel7-11.8.0-520.61.05-1.el7.x86_64.rpm
sudo yum clean all
sudo yum install -y cuda
# 安装cuDNN(需下载对应版本)
tar -xzvf cudnn-11.8-linux-x64-v8.6.0.163.tgz
sudo cp cuda/include/cudnn*.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*
然后通过pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118安装GPU版PyTorch。conda或venv隔离项目依赖,避免版本冲突。性能优化
torch.cuda.is_available()验证。torch.nn.DataParallel或torch.nn.parallel.DistributedDataParallel。torch.cuda.amp.autocast()和GradScaler减少显存占用并加速计算。DataLoader的num_workers和pin_memory参数优化数据预处理。PyTorch Profiler或TensorBoard分析训练瓶颈。torch.no_grad()上下文管理器减少推理时的内存占用。开发与部署
torch.jit.trace或torch.jit.script将模型转换为TorchScript,提升推理效率。科研工具链
注意事项:
nvidia-smi查看驱动版本。DistributedDataParallel。