在CentOS上开展Fortran数据分析,首先需要安装Fortran编译器和科学计算基础库。
yum包管理器安装,命令为:sudo yum install gcc-gfortran。安装完成后,可通过gfortran --version验证是否成功。wget https://www.netlib.org/lapack/lapack-3.9.0.tgz;tar -xzvf lapack-3.9.0.tgz && cd lapack-3.9.0;mkdir build && cd build && cmake -DCMAKE_INSTALL_PREFIX=/usr/local ..;make && sudo make install。sudo yum install blas-devel获取。GSL的安装类似,下载源码后配置--prefix=/usr/local并编译安装。Fortran支持多种数据分析任务,以下是常见场景的代码示例:
program TrapezoidalIntegration
implicit none
real :: a, b, h, integral
integer :: n, i
real :: f
a = 0.0; b = 1.0; n = 1000 ! 积分上下限与步长
h = (b - a) / n
integral = 0.5 * (f(a) + f(b)) ! 梯形法初始化
do i = 1, n-1
integral = integral + f(a + i*h)
end do
integral = integral * h
print *, 'The integral is: ', integral
contains
real function f(x)
real, intent(in) :: x
f = x**2 ! 被积函数
end function f
end program TrapezoidalIntegration
program MatrixMultiplication
implicit none
integer, parameter :: n = 3
real :: A(n,n), B(n,n), C(n,n)
integer :: i, j, k
! 初始化矩阵(示例数据)
A = reshape([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0], [n, n])
B = reshape([9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0], [n, n])
C = 0.0
! 矩阵乘法
do i = 1, n
do j = 1, n
do k = 1, n
C(i,j) = C(i,j) + A(i,k) * B(k,j)
end do
end do
end do
! 输出结果
print *, 'The result of matrix multiplication is:'
do i = 1, n
print *, (C(i,j), j = 1, n)
end do
end program MatrixMultiplication
program parallel_computing
use omp_lib
implicit none
integer, parameter :: dp = selected_real_kind(15) ! 双精度浮点
real(dp), allocatable :: matrix(:,:)
integer :: i, j, n = 1000
allocate(matrix(n,n))
!$OMP PARALLEL DO PRIVATE(i,j) ! 并行区域
do j = 1, n
do i = 1, n
matrix(i,j) = sin(real(i,dp)) * cos(real(j,dp)) ! 计算每个元素
end do
end do
!$OMP END PARALLEL DO
print *, 'Parallel computation completed.'
deallocate(matrix)
end program parallel_computing
.f90文件(如integration.f90),使用gfortran编译:gfortran -o integration integration.f90 -O2(-O2开启优化,提升运行效率)。gfortran -o matrix_mul matrix_mul.f90 -L/usr/local/lib -llapack -lblas。./integration(输出积分结果)。-pg选项(如gfortran -pg -o my_program my_program.f90),运行程序后生成gmon.out文件,再用gprof生成分析报告:gprof my_program gmon.out > analysis.txt。报告会显示函数调用时间和占比,帮助定位性能瓶颈。sudo yum install valgrind,运行valgrind --tool=massif ./my_program分析内存使用情况,ms_print massif.out.*查看详细报告。use omp_lib指令和#$OMP PARALLEL DO并行区域(如上述矩阵计算示例),利用多核处理器提升计算速度。Fortran提供了丰富的文件操作功能,可读取CSV、二进制等格式数据。以下是读取CSV文件的示例:
program read_csv
implicit none
integer :: i, j, n, m, ios
character(len=100) :: line, delimiter
character(len=100), dimension(:), allocatable :: tokens
real, dimension(:,:), allocatable :: data
character(len=100) :: filename
print *, 'Enter the name of the CSV file to read:'
read *, filename
delimiter = ',' ! CSV分隔符
! 第一次遍历:统计行数和列数
open(unit=10, file=filename, status='old', action='read')
n = 0
m = 0
do
read(10, '(A)', iostat=ios) line
if (ios /= 0) exit
n = n + 1
if (n == 1) then
call count_tokens(line, delimiter, m) ! 统计列数(需自定义count_tokens函数)
end if
end do
close(10)
! 分配数组并读取数据
allocate(data(n, m))
allocate(tokens(m))
open(unit=10, file=filename, status='old', action='read')
do i = 1, n
read(10, '(A)') line
call split_string(line, delimiter, tokens) ! 分割字符串(需自定义split_string函数)
do j = 1, m
read(tokens(j), *) data(i,j) ! 将字符串转换为实数
end do
end do
close(10)
! 输出部分数据(示例)
print *, 'First 5 rows and columns of the data:'
do i = 1, min(5, n)
print *, (data(i,j), j = 1, min(5, m))
end do
deallocate(data)
deallocate(tokens)
end program read_csv
注:count_tokens和split_string为自定义函数,用于统计分隔符数量和分割字符串(可根据需求实现)。
f2py将Fortran代码编译为共享库,再用R的reticulate包调用。例如,将Fortran函数编译为my_module.so,在R中执行library(reticulate); py_install("my_module"); my_module$my_function()。mpif90编译),实现分布式内存并行计算。通过以上步骤,可在CentOS上搭建Fortran数据分析环境,实现从代码编写、编译运行到性能优化的完整流程,满足科学计算与大数据处理的需求。