#

pytorch

  • PyTorch的深度学习入门教程之构建神经网络

    前言 本文参考PyTorch官网的教程,分为五个基本模块来介绍PyTorch。为了避免文章过长,这五个模块分别在五篇博文中介绍。 Part3:使用PyTorch构建一个神经网络 神经网络可以使用tou

    作者:雁回晴空
    2020-09-04 16:02:16
  • Pytorch中膨胀卷积的用法详解

    卷积和膨胀卷积 在深度学习中,我们会碰到卷积的概念,我们知道卷积简单来理解就是累乘和累加,普通的卷积我们在此不做赘述,大家可以翻看相关书籍很好的理解。 最近在做项目过程中,碰到Pytorch中使用膨胀

    作者:DL&ML
    2020-09-04 05:57:41
  • 对Pytorch中nn.ModuleList 和 nn.Sequential详解

    简而言之就是,nn.Sequential类似于Keras中的贯序模型,它是Module的子类,在构建数个网络层之后会自动调用forward()方法,从而有网络模型生成。而nn.ModuleList仅仅

    作者:ustc_lijia
    2020-09-04 05:47:05
  • 使用pytorch进行图像的顺序读取方法

    产生此次实验的原因:当我使用pytorch进行神经网络的训练时,需要每次向CNN传入一组图像,并且这些图片的存放位置是在两个文件夹中: A文件夹:图片1a,图片2a,图片3a……图片1000a B文件

    作者:头发结冰的鱼
    2020-09-04 02:39:39
  • 基于pytorch padding=SAME的解决方式

    tensorflow中的conv2有padding=‘SAME'这个参数。吴恩达讲课中说到当padding=(f-1)/2(f为卷积核大小)时则是SAME策略。但是这个没有考虑到空洞卷积的情况,也没有

    作者:BenjaminYoung29
    2020-09-03 20:16:02
  • pytorch 图像中的数据预处理和批标准化实例

    目前数据预处理最常见的方法就是中心化和标准化。 中心化相当于修正数据的中心位置,实现方法非常简单,就是在每个特征维度上减去对应的均值,最后得到 0 均值的特征。 标准化也非常简单,在数据变成 0 均值

    作者:xckkcxxck
    2020-09-03 15:40:52
  • 利用Pytorch实现简单的线性回归算法

    最近听了张江老师的深度学习课程,用Pytorch实现神经网络预测,之前做Titanic生存率预测的时候稍微了解过Tensorflow,听说Tensorflow能做的Pyorch都可以做,而且更方便快捷

    作者:carmanzzz
    2020-09-03 07:10:15
  • 使用pytorch搭建AlexNet操作(微调预训练模型及手动搭建)

    本文介绍了如何在pytorch下搭建AlexNet,使用了两种方法,一种是直接加载预训练模型,并根据自己的需要微调(将最后一层全连接层输出由1000改为10),另一种是手动搭建。 构建模型类的时候需要

    作者:sjtu_leexx
    2020-09-02 03:57:59
  • pytorch 自定义数据集加载方法

    pytorch 官网给出的例子中都是使用了已经定义好的特殊数据集接口来加载数据,而且其使用的数据都是官方给出的数据。如果我们有自己收集的数据集,如何用来训练网络呢?此时需要我们自己定义好数据处理接口。

    作者:xholes
    2020-08-31 19:17:51
  • PyTorch中 tensor.detach() 和 tensor.data 的区别详解

    PyTorch0.4中,.data 仍保留,但建议使用 .detach(), 区别在于 .data 返回和 x 的相同数据 tensor, 但不会加入到x的计算历史里,且require s_grad

    作者:梦家
    2020-08-31 09:29:53