#

pytorch

  • PyTorch中反卷积的用法详解

    pytorch中的 2D 卷积层 和 2D 反卷积层 函数分别如下: class torch.nn.Conv2d(in_channels, out_channels, kernel_size, s

    作者:月牙眼的楼下小黑
    2020-09-11 21:37:09
  • Pytorch在NLP中的简单应用详解

    因为之前在项目中一直使用Tensorflow,最近需要处理NLP问题,对Pytorch框架还比较陌生,所以特地再学习一下pytorch在自然语言处理问题中的简单使用,这里做一个记录。 一、Pytorc

    作者:黄鑫huangxin
    2020-09-11 13:54:10
  • Pytorch 实现自定义参数层的例子

    注意,一般官方接口都带有可导功能,如果你实现的层不具有可导功能,就需要自己实现梯度的反向传递。 官方Linear层: class Linear(Module): def __init__(se

    作者:青盏
    2020-09-11 06:24:01
  • pytorch-RNN进行回归曲线预测方式

    任务 通过输入的sin曲线与预测出对应的cos曲线 #初始加载包 和定义参数 import torch from torch import nn import numpy as np import

    作者:马飞飞
    2020-09-11 03:29:15
  • PyTorch中的padding(边缘填充)操作方式

    简介 我们知道,在对图像执行卷积操作时,如果不对图像边缘进行填充,卷积核将无法到达图像边缘的像素,而且卷积前后图像的尺寸也会发生变化,这会造成许多麻烦。 因此现在各大深度学习框架的卷积层实现上基本都配

    作者:hyk_1996
    2020-09-11 02:17:22
  • PyTorch快速搭建神经网络及其保存提取方法详解

    有时候我们训练了一个模型, 希望保存它下次直接使用,不需要下次再花时间去训练 ,本节我们来讲解一下PyTorch快速搭建神经网络及其保存提取方法详解 一、PyTorch快速搭建神经网络方法 先看实验

    作者:marsjhao
    2020-09-10 13:29:55
  • 关于pytorch多GPU训练实例与性能对比分析

    以下实验是我在百度公司实习的时候做的,记录下来留个小经验。 多GPU训练 cifar10_97.23 使用 run.sh 文件开始训练 cifar10_97.50 使用 run.4GPU.sh 开始训

    作者:奏英宇
    2020-09-10 12:01:07
  • pytorch自定义初始化权重的方法

    在常见的pytorch代码中,我们见到的初始化方式都是调用init类对每层所有参数进行初始化。但是,有时我们有些特殊需求,比如用某一层的权重取优化其它层,或者手动指定某些权重的初始值。 核心思想就是构

    作者:goodxin_ie
    2020-09-10 10:04:55
  • pytorch实现建立自己的数据集(以mnist为例)

    本文将原始的numpy array数据在pytorch下封装为Dataset类的数据集,为后续深度网络训练提供数据。 加载并保存图像信息 首先导入需要的库,定义各种路径。 import os im

    作者:sjtu_leexx
    2020-09-10 04:51:50
  • PyTorch和Keras计算模型参数的例子

    Pytorch中,变量参数,用numel得到参数数目,累加 def get_parameter_number(net): total_num = sum(p.numel() for p in

    作者:咆哮的阿杰
    2020-09-09 04:26:31